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ABSTRACT

Two main problems are analyzed and discussed in this thesis. First, a
detailed derivation of the exact solution for the inhomogeneous Helmholtz
equation for a free-space propagation problem when the square of the index of
refraction is a linear function of depth and the input is an omnidirectional point
source is performed and discussed. The exact solution is in terms of Airy and
Bairy functions. Second, the accuracy of the Recursive Ray Acoustics (RRA)
Algorithm was tested by generating test cases using a sound-speed profile with the
square of the index of refraction a linear function of depth. The acoustic pressure
(amplitude and phase) calculations obtained from the RRA Algorithm were then
compared to the exact "Airy function" solution. Computer simulation results

indicate that both solutions are in good agreement.
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L. INTRODUCTION

This thesis has two primary goals. The first goal is to derive and document the
solution to the three-dimensional inhomogeneous Helmholtz equation for a free-space
propagation problem when the square of the index of refraction is a linear function of
depth. Given this type of ocean medium, the inhomogeneous Helmholtz equation has an
exact solution in terms of Airy functions. This exact "Airy function” solution will be
incorporated into the computer program Linear Space-Variant Ocean (LSVOCN) as an
additional ocean-medium transfer function. The second goal of this thesis is to further
test the Recursive Ray Acoustics (RRA) Algorithm by comparing the magnitude and
phase of the acoustic pressure calculated along a ray path by the RRA Algorithm with the
magnitude and phase calculated by LSVOCN.

The first step in this process requires a careful derivation of the solution to the
three-dimensional inhomogeneous Helmholtz equation for a free-space propagation
problem when the square of the index of refraction is a linear function of depth. This
derivation will be discussed in detail in Chapter II which is divided into three main
sections. Section A defines the three-dimensional inhomogeneous Helmholtz equation to
be solved. (By using a zeroth-order Hankel transform, the solution process is simpliﬁed
to solving a one-dimensional inhomogeneous ordinary differential equation vice a
three-dimensional inhomogeneous Helmholtz equation). Section B defines the
mathematical formula used to model the square of the index of refraction as a linear
function of depth. Section C documents the three steps that lead to the final solution of
the inhomogeneous Helmholtz equation.

First, the description of the sound-speed profile is defined. This description
allows us to solve for the two constants in the equation for the square of the index of
refraction as a linear function of depth. Second, the homogeneous depth equation is
manipulated into the form of Airy's differential equation and then solved in terms of Airy
and Bairy functions. Third, the solution of the inhomogeneous depth equation is obtained

by applying the appropriate boundary conditions at the source.




The solution to the inhomogeneous Helmholtz equation is divided into two cases.
In case one, the square of the index of refraction has a negative gradient. This case is
further subdivided into a solution for the receiver depth equal to or above the source
depth, and a solution for the receiver depth below the source depth. In case two, the
square of the index of refraction has a positive gradient, and again a solution for the
receiver depth equal to or above the source depth, and a solution for the receiver depth
below the source depth are found.

Chapter I1I is divided into three sections. Section A discusses the numerical
techniques used in the process of converting the Airy function solution into working
FORTRAN computer code used by LSVOCN, and defines the Green's function used to
test LSVOCN. Before testing of the RRA Algorithm began, a comparison was made of
the output of LSVOCN, using the above derived Airy function solution, with a test case,
in an effort to validate the FORTRAN computer code. The simplest test case considered
compared the magnitude and phase of the time-independent free-space Green's function
for an isospeed medium with the output from LSVOCN.

Section B of Chapter III discusses the three different Green's function test cases
that were used to test LSVOCN. These are: (1) Green's function test case with the source
sound-speed varied such that the modeled ocean medium approached an isospeed
medium in order to compare the magnitude and phase of the Green's function with
LSVOCN, (2) Green's function test case with the horizontal range varied while
maintaining the receiver at the source depth, thus simulating an isospeed ocean medium
for comparison of the Green's function magnitude and phase with LSVOCN, and (3)
Green's function test case with the receiver depth varied above and below the source
depth by one-half meter allowing for an approximate comparison of the Green's function
magnitude and phase with LSVOCN. In each test case, the change in sound speed
between the source and receiver was small enough to approximate an isospeed ocean
medium.

Section C of Chapter I1I focuses on the validation of the predicted values for the

magnitude and phase of the acoustic pressure along a ray path given by the RRA




Algorithm. This is done by propagating sound rays at various launch angles using
negative and positive gradients for the index of refraction profile. The horizontal range
and depth coordinates of selected points along these ray paths have been recorded and
will become the receiver horizontal range and depth coordinates used later as inputs to
LSVOCN. The magnitude and phase values calculated by LSVOCN are then compared
to the corresponding magnitude and phase values obtained from the RRA Algorithm for
validation purposes.

Chapter IV summarizes the numerical problems encountered during the validation

process, states conclusions as well as recommendations for future research.







II. AIRY FUNCTION SOLUTION OF THE INHOMOGENEOUS
HELMHOLTZ EQUATION

A. THE INHOMOGENEOUS HELMHOLTZ WAVE EQUATION
In this chapter we shall derive a solution for the following inhomogeneous

Helmboltz equation in cylindrical coordinates (r, ¢,y), shown in Fig. 1:
3 2<pf(r,y) + ‘Pf r.y) + <pf(r,y) +EW)oAr,y) = B(y 1)) (2.1)

where the velocity potential @,(r,y) is axisymmetric (i.e., independent of the azimuthal

angle ¢ ),

2nf

c(y) (22)

k) =

is the depth-dependent wave number, c(y) is the depth-dependent speed of sound, and the
impulse functions on the right-hand side of Eq.(2.1) represent a unit amplitude,

omnidirectional point source atr=0andy=y,.

Figure 1. Illustration of problem geometry.




The solution @, (r,y) of Eq.(2.1) can be expressed as an inverse zeroth-order

Hankel transform as follows, see [Ref. 2, Appendix 3CJ:

O/r,y) =Hy' {®flkr, )} = [ Ofky, yMokrr Ik, (2.3)
where
Os(kr,y) = Ho{or. 0} = [ or, yWolh,ryrdr (24)

is the forward zeroth-order Hankel transform (also known as the Fourier-Bessel
transform) of ¢, (r,y). Therefore, if we can find @, (k,,y), then substituting @, (k,,y) into
Eq.(2.3) will yield a solution of Eq.(2.1).

Since
Ho( Lot + L2osr) ) =~ Btk @5)
o’ For™™”’ PR :

and

H0(§er—))= 1, (2.6)
taking the zeroth-order Hankel transform of Eq.(2.1) yields

d? 2 _ 80’ -y 0)

57 DY) OOk, y) = =220 (2.7)
where

) =k0)- k2. (2.8)

In Eq.(2.8), &, (p) is the depth-dependent propagation-vector component in the Y
direction and £, is the constant propagation-vector component in the horizontal range r
direction (see Fig. 2). Therefore, now we only have to solve the ordinary differential
equation given by Eq.(2.7) instead of the partial differential equation given by Eq.(2.1).
Substituting the solution ®,.(k,,y) into Eq.(2.3) yields the solution @, (r.y) to Eq.(2.1).




k.

k)
k()

X v
Y

Figure 2. llustration of the propagation-vector components £, and £, (y)
and their relationship to the wave number i(y).

B. PROBLEM CONSTRAINTS
The solution of Eq.(2.1) that shall be derived is only applicable to free-space
propagation when the square of the index of refraction is a linear function of depth y. The

index of refraction is defined as follows:

n(y)=;%) (2.9)

where ¢, = c(y,) is the speed of sound (m/s) at the source depth y, and c(y) is the speed
of sound (m/s) at depth y. If we let &, = k(y,), then evaluating Eq.(2.2) at y =y, yields

ko =2c_’;f. (2.10)

Therefore, we can write that

k(y)=kon(y)=3——(15;. (2.11)

As aresult, Eq.(2.8) can be rewritten as




KX(v) = kin*(y) - k2. (2.12)
To ensure that the square of the index of refraction is a linear function of depth, we

define the following equation:
ny)=ay+a. (2.13)

C. PROBLEM SOLUTION

Using the results from the last two sections, specifically Eq. (2.7) and (2.12), we
are now ready to solve the inhomogeneous Helmholtz equation. The solution can be
broken into two parts. First, determine the solution of Eq.(2.7) aty =y, , i.e., solve the
homogeneous equation. Solving the homogeneous equation will result in four unknowns.
In order to determine these four unknowns, which is the second part of the problem, we
apply the boundary conditions above and below the source and the boundary conditions
at the source, i.e., aty = y,. As shown in [Ref. 2, Appendix 3C], the two boundary
conditions that must be satisfied at the source are continuity of acoustic pressure and
discontinuity in the y component of the acoustic fluid velocity vector. With this brief
introduction in mind, let us now proceed with the solution of the inhomogeneous

Helmholtz equation.
1. Description of the Sound-Speed Profile

Consider a sound-speed profile where the square of the index of refraction is a

linear function of depth, [see Eq.(2.13)]:
ny)=ay+a,. (2.14)

With the above equation in mind, we must now solve for the two unknown constants,

a, and a,, in order to solve Eq(2.7). Substituting Eq.(2.9) into Eq.(2.14) yields

C2

0
c’(y)

=ay+ap. (2.15)




Rewriting Eq.(2.15) yields

1 a |
— =49, % 2.16
a0 2t (216
and if we let
ay =4l (2.17)
Co
and
ah=22, (2.18)
Co
then
1 / /
=a,y+a,. 2.19
02(}’) ay 0 ( )
Solving for the speed of sound yields
cy) = —2 i (2.20)

Jdyvd  [ay+ao

Equation (2.20) will allow the sound-speed profile to be calculated, once the unknown
constants have been determined.

Evaluating Eq.(2.19) at y =0 and at y = y, , i.e., the source depth, yields

a =1 (2.21)

and

1 )=a’lyo+a{,, i (2.22)

r_ 1111
a) —y"[c% 02(0)]' (2.23)




Thus, using Eqgs.(2.21), (2.23), (2.17), and (2.18), g, and a, can be determined.

For our problem, we will use a source depth of y, = 150 meters. In order to
define a sound-speed profile, we specify the sound speed (m/s) at y = 0 to be ¢(0) = 1500
m/s. For a positive sound-speed gradient we specify the sound speed at the source depth
to be ¢, = 1515 m/s. Similarly, for a negative sound-speed gradient, we specify the
sound speed at the source depth to be c,= 1485 m/s. These sound-speed profiles, along

with the corresponding index of refraction plots, are shown in Fig. 3 and Fig. 4,

respectively.
INDEX OF REFRACTION SQUARED vs. DEPTHO SOUND SPEED PROFILE
0 Y
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Fig. 3 Positive sound-speed gradient.
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Fig. 4 Negative sound-speed gradient.
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2. Solution to the Homogeneous Depth Equation

Having carefully defined the sound-speed profile, we are now ready to solve the
inhomogeneous depth dependent Helmholtz equation as given by Eq. (2.7). As stated
previously, the first part of the solution process is to solve the homogeneous equation
where the square of the index of refraction is a linear function of depth. The

homogeneous equation is
‘1y2 f(kf’y) + ()’)q)f(kr,y) = 0 (224)

Substituting Eq. (2.13) into Eq. (2.12) yields
B) = K(ay+ao) - k2, | (2.25)

or
K(y)=kiary +kiao - k2. (2.26)

Substituting Eq. (2.26) into Eq. (2.24) and simplifying
dy2 L@ [k,,y) + (a1kay + aokl — k2)®k,,y) =0. (2.27)

If we let 0, and ot be defined as

ol = aok? — k2 (2.28)
and ]

o =ak3, (2.29)
then

rE d);(k,,y) + (oY + 0o)Dylk,, y) = 0. (2.30)

Next, we must manipulate Eq. (2.30) into the form of Airy's differential equation.

11




The first step in this process is to define the new term

£0) =%e) 3 (o + o).

Applying the chain rule yields

d dC(y)

dyd),(k,, )= Z (y)d>f(k,, dy ,
and since

%y—) = (o),

upon substituting Eq.(2.33) into Eq. (2.32), we obtain

A (k,,y) = (01) I =Z— ks, ).
dy dl(y)

Applying the chain rule again yields

L by =4 Dk, )= [+<a,)%

& dydy 2 R )

=i(0t1)3 ¢/(kr,y)

d@()’) dy
and upon substituting Eq. (2.34) into Eq. (2.36), we obtain

2
m —_—
-d?d)f(kr,y) =+Hao)3

d?
Ok, y).
i) k)

Combing Egs. (2.30), (2.31), and (2.37) yields

rY)+ (‘*)(011)3 LONDAk,, y) =

011)3

arem )

12

Dk, y)]

)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)




or
&?
d*L(y)

Upon choosing the minus sign, we have Airy's differential equation:

——@k,,y) £ L)PAK,, ) =0. (2.39)

dcz(y)q)f(kr,y) £0)DAkr,y) =0. (2.40)

The general solution of Airy's differential equation is given by

Dfk,,y) = AAI[C()] + BBi[{()] , fory <y, (2.41)

D((k,,y) = CAi[L(»)] + DBiI[{(y)] , for y 2y (2.42)

where Ai and Bi are the Airy and Bairy functions, and 4, B, C, and D are unknown
constants. Equation (2.41) and Eq.(2.42) form the solution to the depth dependent
homogeneous Helmholtz equation. We have an equation with four unknown constants as
a result of solving a second-order differential equation. To find these four unknown
constants, we must apply the boundary conditions above and below the source and the
boundary conditions at the source, as will be done in the next section.

3. Solution to the Inhomogeneous Depth Equation

In this section we will determine the general solution to the inhomogeneous depth
dependent Helmholtz equation. As stated previously, in order to solve for the four
unknown constants in Eq.(2.41) and Eq.(2.42), we must satisfy the boundary conditions

above and below the source and the boundary conditions at the source. However, before

we proceed with this solution, let us examine in detail the behavior of the functions
Ai[L(»)] and Bi[{(p)] to gain insight into the solution of the problem.

By choosing the minus sign in Eq.(2.31), we can write that

2
L) =—(0n) 3 (oY +0) (2.43)

13




Because

)= oy +ao, (2.44)
Eq.(2.43) can be rewritten as
_2
CO0) = - (01) 3k2(p). (2.45)

Furthermore, by referring to Eq.(2.12), we can write that
K0) = ko[n* () = sin*(Bo)] (2.46)

since k, = k,sin(B,), where B, is the launch angle, measured with respect to the positive ¥
axis. Values of B, range from 0 to 180 degrees, [Ref. 2, Chapter 5]. Tables 18 through
23, located in the Appendix, contain values for n¥(y), k’(»), and £(») as a function of
frequency, B,, and depth y, for the analysis of the functions Ai[L(»)] and Bi[{(y)]. The
data in these tables is further displayed in graphical form in Figures 12 through 17, also
located in the Appendix.

To analyze the behavior of 4i[{(y)] and Bi[{(»)] , let us draw our attention to Fig.

5 and Fig. 6, as shown below:

1
»720) : —p72()
lla la
Vo yo
Hb b
v v
Y Y
Figure 5. Case one: Figure 6. Case two:

n?(y) with negative gradient. n*(y) with positive gradient.




The free-space solution can be broken into two cases. Case one: 7’ (y) has a negative
gradient, (see Fig. 5, Fig. 3, Fig. 15 through Fig. 17, and Tables 21 through 23). Case
two: n’(y) has a positive gradient, (see Fig. 6, Fig. 4, Fig. 12 through Fig. 14, and Tables
18 through 20). Also, as can be seen from Fig. 5 and Fig. 6 , each case must be analyzed
in two regions, one above the source depth y, , and one below the source depth y,,.

First, let us analyze the behavior of the functions Ai[{(y)] and Bi[{(y)] for,
Region IIb, Case one. Notice from Fig. 5, that the value of n’ (y) is less than one in this
region. Thus, as can be seen from Eq.(2.46), kyz(y) will take on negative values. This will
result in values of {(y) taking on positive values [see Eq. (2.45)]. Therefore, in Region

IIb, Case one we should use the function Ai[{()] to ensure a bounded solution since

A[Ey)] >0  as{(y) ——> +oo

and

BIL()] > te0 a5 L) = too.

Following a similar argument for Region ITa, Case two we should only use the function
Ai[{(»)]. Thus, by discarding the Bairy function in Region IIb, Case one and Regioﬁ Ila,
Case two we have ensured that our solution will remain bounded above and below the
source as {(y) approaches positive infinity.

Second, for Region Ila, Case one and Region ITb, Case two the value of n’(y)is
greater than one. Thus k,’(y) will take on positive values, which leads to negative values
for {(y). Therefore, both 4i[{(¥)] and Bi[{(y)] should be used in Region Ila, Case one
and Region IIb, Case two since both the Airy and Bairy functions are well behaved for
negative arguments. The asymptotic forms of the Airy and Bairy functions are defined as
follows, [Ref. 4, Chapter 7]

AL = SO SO + ] L0) —> 4 (24)

and

15




BILW] =W eoslH-LONT + 51 L) —> 4o (248)

Thus, to determine the general solution of the inhomogeneous depth equation we
must ensure the solution is bounded in Region ITb, Case one and Region Ila, Case two,
i.e., D=0 (Case one), see Eq.(2.42) and B = 0 (Case two), see Eq.(2.41). Next, we must
ensure the solution is in the form of a propagating wave in Region Ila, Case one and
Region IIb, Case two, i.e., 4 = B, and a = B/A (Case one), see Eq.(2.41), and C = B, and
b = D/C (Case two), see Eq.(2.42). In summary, we have the following forms for the
free-space propagation solutions for each case based on Eq.(2.41) and Eq.(2.42):

Case one: D,.(k..y) = B, [A{C(»] + aBill()]] fory<y, (2.49)
Dy, (k. .y) = A, [4i[LO)]] fory 2 y, (2.50)

Case two: D, (k.y) = A, [AIL)]] fory<y, (2.51)
D, (%, ) = B, [4i[L(»)] + bBI{(»)]] fory 2y, (2.52)

where 4, and B, are arbitrary constants and @ and b are known constants to be discussed
later. Thus, for each case, we have two equations and two unknowns.

To solve for the two unknown constants, we apply the boundary conditions of
continuity of acoustic pressure and a discontinuity in the y component of the acoustic
fluid velocity vector at the source depth y,;

1. continuity of acoustic pressure:
d)ﬂb(knyO) - (Dﬂa(kr:yO) =0 (2.53)

2. discontinuity in the y component of the acoustic fluid velocity vector:

ko) = o onathr.yo) =d (2.54)

16




where d = é is the finite discontinuity, [Ref. 2, Appendix 3C].

CASE ONE:
Substituting Eq.(2.49) and Eq.(2.50) into Eq.(2.53) yields

A, 4iC(yo)] - B, [AilC(yo)] +aBilL(0)1]=0,

and upon solving for 4, we obtain

[4ilE(yo)] + aBill(o)l ]
AilE(yo)] '

A, =B,

Substituting Eq.(2.49) and Eq.(2.50) into Eq(2.54) yields

~(01)4 »ATIE(30)] - (-)(e1)3B Y14 [((yo)] + aBi' [E(yo)ll =4,
and upon substituting Eq.(2.56) into Eq.(2.57) and rearranging terms, we obtain

aB, , y iy y ___d_
AMC00)] [BilL(yo)14i'[(vo)] — AHEo)IBi' IE(o)]] (a,)é'

Since, see [Ref. 1, Chapter 4]

BilL(yo) ¥ [L(yo)] ~ AiLLo)IBI L)) = -

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

which is known as the Wronskian of the Airy and Bairy functions, substituting Eq.(2.59)

into Eq.(2.58) and solving for B, yields

B, =~ _4ii o).
a(o)3

(2.60)




Substituting Eq.(2.60) into Eq.(2.56):

Ay =—"2[4i[(yo)] + aBIl (o).

a(oy)3

ASE TWO:
Substituting Eq.(2.51) and Eq.(2.52) into Eq.(2.53) yields

B,[AilC(vo)] + BBilC(yo)]] — 4,4i[{(y0)] =0,

and upon solving for 4, , we obtain

4. = p AIE@)] + BBILLpo)]
TR Ao

Substituting Eq.(2.51) and Eq.(2.52) into Eq.(2.54) yields

—(Otx)%By[AfIQ(Vo)] + bB]1L(ro)]] - (—)(al)%AyA,,'[C(VO)] =d,

and upon substituting Eq.(2.63) into Eq.(2.64) and rearranging terms, we obtain

5B,
AilC(yo)]

Since

ATEEIBEY0] — BIlLro A (o)l = L,

substituting Eq.(2.66) into Eq.(2.65) and solving for B, yields

By =~—"__4iltyo).
b(o,y)3
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[4ilCa)IBi'[C(vo)] — Bill(yo)lAi’ [L(yo)]] =~

|
.

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)




Substituting Eq.(2.67) into Eq.(2.63) yields

4y=——"4 TIAIE00] + bB.LYo)I]- (2.68)
b(aiy)3

Values for the constants a and b must be determined before we have a complete
solution. To determine the value of g, recall Eq.(2.49) and Eq.(2.60). Substituting
Eq.(2.60) into Eq.(2.49) and rearranging terms yields

Oty = YN Ly jrn + Biton]. y<,. (2.69)

(04)3

Note that ( see Tables 21 through 23, located in the Appendix) asy — — oo, {(}) = —eo.
Recall the asymptotic expansions of 4i[{(y)] and Bi[((y)]:

AITER)] =71_;[—C(y)1?"sin[§[—co»)]% +5, L) => oo (2.70)
and
Bil»)] = %[—C(V)J_TI cos[2{~L)I7 + B, L) > oo, @.71)

Therefore, substituting Eq.(2.70) and Eq.(2.71) into Eq.(2.69) yields

Dt y) = BN 3 LinLonE + ) + cosii-Lou} + 5] @72

JT(0)3

Since this derivation corresponds to a time-harmonic solution with time dependence
given by exp(+j27f}), in order to get @, (k, ,y) into the form of a wave traveling in the

positive -{(y) direction, we must choose a = +j since

exp(—71-C0)]) = cos((-L()) —jsin([-L D). (2.73)
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To determine the value of b, we follow a similar logic. Substituting Eq.(2.67) into

Eq.(2.52) and rearranging terms yields

D@py(k,,y) = _%&yo)[%“ii[g(}’)] + Bi[C(y)]], y2y,. (2.74)
(0g)3

Note that (see Tables 18 through 20, located in the Appendix) as y = + oo, {(y) = — oo,
Using the same logic as before, since -{(y) --> +oo, we must pick b = +j to ensure the
correct form of Eq.(2.74).

In summary, we have the following formulas:

CASE ONE:
e
D) = BN i) B}y <0 2.75)
)e)3
and
Ok, y) = AL LBICGOL} iy (276
(H)(on)3
CASE TWO:
Otk )= AILOOL BN e -
(a3
and
Othr, ) == ZENON i ity v v (2.78)
(#(oy)3
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Recall that d = —l—.
2n

Now that a solution for @, (k, ,y) has been derived, all that is left to determine the
velocity potential is to insert @, (k, ,y) into Eq.(2.3) and integrate. It is interesting to
note, as described in, [Ref. 2, Chapter 9], that:

Dikr,y) =Hn(f.[r.y ; Yo) (2.79)

where H_(f,f.y ; y, ) is the time-invariant, space-variant ocean medium transfer function.
Thus, as described in the Introduction of this thesis, Eq.(2.75) through Eq.(2.78) will be
added to the already existing library of ocean medium transfer functions in the program
LSVOCN. With this derivation and new transfer function, we can compare the results
from LSVOCN to the RRA algorithm to determine the accuracy of the RRA algorithm.
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III. COMPARISON OF THE "AIRY FUNCTION" SOLUTION
(MAGNITUDE AND PHASE)
WITH THE RRA ALGORITHM'S SOLUTION

A. THE TIME-HARMONIC FREE-SPACE GREEN'S FUNCTION AND
NUMERICAL ANALYSIS TECHNIQUES
1. The Time-harmonic Free-Space Green's Function for a Homogeneous
Ocean Medium

Once the solution to the inhomogeneous Helmholtz equation for a free-space
propagation problem with the square of the index of refraction a linear function of depth
had been derived, the solution was converted to FORTRAN computer code and added
to the computer program LSVOCN as a new ocean medium transfer function. LSVOCN
will accept as primary inputs:

1. Sound-speed at the ocean surface and source, in meters/second.

2. Receiver depth and horizontal range relative to the source, in meters.

3. Frequency the source will operate, in Hertz.

The output of LSVOCN is either the velocity potential (magnitude and phase) or
the acoustic pressure (magnitude and phase) at a specified receiver location. To test the
RRA Algorithm, the depth and horizontal range coordinates of selected points along a
ray path, propagated by the RRA Algorithm, will be input into LSVOCN as receiver
coordinates. The calculated acoustic pressures (magnitude and phase) from LSVOCN
corresponding to these selected points, will be compared with the calculated acoustic
pressures (magnitude and phase) from the RRA Algorithm.

Before beginning the testing process, we needed to ensure that both the
theoretical solution and FORTRAN computer code were correct. In order to perform this
validation, test cases were developed for which theoretical values of the velocity
potential could be calculated and compared with the predicted values found using
LSVOCN. The time-harmonic free-space Green's function which corresponds to a
spherical sound source operating in the monopole mode of vibration in a homogeneous

ocean medium, was selected as the basis for these test cases.




As shown in [Ref. 2, Chapter 4], the velocity potential of the acoustic field
produced by a spherical sound source in the monopole mode of vibration operating in an
unbounded, homogeneous medium is given by

_ exp(+jka)
QAR ,0,y) = SogArl0) T+jka R2a, (3.1

where S, is the source strength (volume flow rate) in m?/s,

_ _ SXP(kR)
grl0) =— == (3.2)

is the time-harmonic free-space Green's function (exp(jax) factor suppressed) and R is
the spherical range between source and receiver. In the limit as a — 0 (modeling a point
source) Eq.(3.1) becomes

9AR,0,¥) = Sogy(rl0) =5, BT g g, (3:3)

Using Eq.(3.3), theoretical values for the magnitude and phase of an acoustic
field at a receiver in an unbounded, homogeneous ocean medium located R meters from a
point source can easily be calculated. Although these values are valid only for the
homogeneous case, as the modeled ocean medium that LSVOCN uses becomes more
homogeneous, then the calculated velocity potential (magnitude and phase) from
LSVOCN should approach the predicted values calculated by Eq.(3.3). The theoretical
magnitude of the velocity potential calculated by Eq.(3.3) is given by

_ S 34

The theoretical phase of the velocity potential calculated by Eq.(3.3) is given by
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L@r= x(il - @) (3.5)
where fis the frequency at which the source operates, R is the spherical range between
the source and receiver, and c is the speed of sound. In order to test the Airy function
solution and the corresponding FORTRAN computer code in LSVOCN, Eq.(3.4) and

Eq.(3.5) were used in three different Green's function test cases, defined as follows:

1. With the receiver and source depth equal, and with the receiver one meter from
the source, vary the speed of sound at the source so that it approaches the speed
of sound at the surface.

2. With the receiver and source depth equal, and the source sound-speed constant,
vary the horizontal range between the source and receiver.
3. With the source sound-speed constant, vary the receiver depth.

Each of these test cases will be covered in detail in Section B of this chapter.
2. Numerical Analysis Techniques

Recall from Eq.(2.3) that
0/r,y) = H {DAk.,»)} = [T ©fkr, YW ok,r)k ;. (3.6)

In order to calculate the exact "Airy function" solution at a given receiver depth and
horizontal range, the integral in Eq.(3.6) must be computed. As we discovered, this
integral is difficult to evaluate numerically. The integrand in Eq.(3.6) is oscillatory due
to the Bessel function, when negative arguments of the Airy and Bairy functions are
involved. Numerous overflow and underflow errors were generated when Eq.(3.6) was
calculated numerically with the computer. To eliminate overflow errors, the
exponentially scaled versions of the Airy and Bairy functions were used. The following
example illustrates the method of using the exponentially scaled Airy and Bairy functions
to eliminate overflow errors. |

In order to solve Eq.(2.75) or Eq.(2.78) for the case of propagating waves, it is
necessary to multiply the Airy and Bairy functions together. Although the argument of

these functions, {(»), is more likely to take on negative values in regions 11a, Case one




and region IIb, Case two, once the propagating waves turn evanescent, the value for {(y)
is forced to take on positive values which cause the Bairy function to blow up, leading to
overflow errors. By experimentation it was discovered that the computer could handle
values of {(y) up to positive forty, without generating overflow errors. However, to
include most of the evanescent waves, {(y) must be allowed to take on much larger
positive values, which requires the use of the exponentially scaled Airy and Bairy

functions:

1.DAI(x), DBI(x) -- double-precision IMSL Airy and Bairy functions.

2.DAIE(x), DBIE(x) -- double-precision IMSL exponentially scaled and Bairy

functions.
where
DAIE(x) = DAl(x) xexp(gx%) (3.7)
and
DBIE(x) = DBI(x) x exp(- §x%). (3.8)

Therefore when multiplying 4i[{(y)] and Bi[{(y)], first form the difference term:
2 2 2
DIFF = ;[Z;(yo):* -Lo)3 ] (3.9)

Then perform the required multiplication as follows:

A\[C0o)] X B.[L()] = exp(~DIFF) x DAIE[S(y,)] x DBIETL()] . (3.10)

This method of multiplying the Airy and Bairy functions together allows for much larger
values of {(y) to be used. Thus most of the evanescent waves could be included.
Underflow errors did not offer the same problems that overflow errors caused since the
machine handled underflow errors without termination of the computer program

LSVOCN. However, small inaccuracies from underflow errors had to be expected.
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These same techniques can be used to solve Eq.(2.76) and Eq.(2.77). Overflow
errors were not a problem for these two equations since the Bairy function was not part
of the solution. Graphical presentations of the Airy and Bairy functions are included in
Figures 7 and 8. Tabulated values of the Airy and Bairy functions, the exponentially
scaled Airy and Bairy functions, and EDAIE(x) and EDBIE(x) are included in Table 1.
The functions EDATE(x) and EDBIE(x) are the exponentially scaled Airy and Bairy
functions multiplied by the appropriate exponential factor that eliminates the exponential
scaling. These values were also tabulated to ensure that the numerical method
represented by Eq.(3.9) and Eq.(3.10) would produce the same values as if the
exponentially scaled functions were not used. This can be observed in Table 1 by
noticing that DAI(X) = EDAIE(X) and that DBI(X) = EDBIE(X).

To solve for the velocity potential, Eq.(3.6) must theoretically be integrated from
zero to infinity. In practice, the upper limit of integration need not be infinity, but rather
a sufficiently large number so that the integrand becomes negligible in value, in other
words, all significant evanesent waves are included. A method was developed to
automatically generate the upper limit of integration. This method will be discussed next.

We begin with Eq.(2.45), rewritten here for convenience:
2.,
LO) = (o) 3E20). (3.11)
Equation (3.11) can rewritten as

L) = ——=——1[k*0) - ¥, . (3.12)

f(ak2)?

and upon rearranging terms and solving for &, we obtain

k,=+Jk2@) + [,3/(a,k§)2 ]g(y) ) (3.13)




X DAIE(X) |

Airy and Exponentially Scaled Airy Functions

0.0E+00 0.355028E+00
0.1E+02 0.158124E+00

0.1E+03 0.891969E-01
0.1IE+04 0.501642E-01
0.1E+05 0.282095E-01
0.1E+06 0.158634E-01
0.1E+07 0.892062E-02
0.1E+08 0.501643E-02
0.1E+09 0.282095E-02
0.IE+10 0.158634E-02
0.1IE+11 0.892062E-03
0.1E+12 0.501643E-03
0.1E+13 0.282095E-03
0.1E+14 0.158634E-03
0.1E+15 0.892062E-04
0.1E+16 0.501643E-04
0.1E+17 0.282095E-04
0.1E+18 0.158633E-04
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Figure 7. Tabulated values of DAIE(x) and plots of DAI(x), DAI(-x), DAIE(x), and EDAIE(x).
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Bairy and Exponentially Scaled Bairy Functions
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X DAI(X) DAIE(X) EDATE(X) X DBI(X) DBIE(X) EDBIE(X)
0.00 0.355028E+00 0.355028E+00 0.355028E+00 0.00 0.614927E+00 0.614927E+00 0.614927E+00
0.10 0.329203E+00 0.336217E+00 0.329203E+00 0.10 0.659862E+00 0.646096E+00 0.659862E+00
0.20 0.303703E+00 0.322363E+00 0.303703E+00 020 0.705464E+00 0.664628E+00 0.705464E+00
030 0.278306E+00 0.311084E+00 0.278806E+00 030 0.752486E+00 0.674409E+00 0.752486E+00
040 0.254742E+00 0.301541E+00 0.254742E+00 040 0.801773E+00 0.677338E+00 0.801773E+00
0.50 0.231694E+00 0.293277E+00 0231694E+00 0.50 0.854277E+00 0.674892E+00 0.854277E+00
0.60 0209800E+00 0.286000E+00 0.209800E+00 0.60 0.911063E+00 0.668324E+00 0.911063E+00
0.70 0.189162E+00 0.279513E+00 0.189162E+00 0.70 0.973329E+00 0.658708E+00 0.973329E+00
0.80 0.169846F+00 0273670E+00 0.169846E+00 0.80 0.104242E+01 0.646954E+00 0.104242E+01
0.90 0.151887E+00 0268364E+00 0.151887E+00 0.90 0.111987E+01 0.633817E+00 0.111987E+01
1.00 0.135292E+00 0.263514E+00 0.135292E+00 1.00 0.120742E+01 0.619912E+00 0.120742E+01
110 0.120049E+00 0259052E+00 0.120049E+00 110 0.130707E+01 0.605721E+00 0.130707E+01
120 0.106126E+00 0.254928E+00 0.106126E+00 120 0.142113E+01 0.591614E+00 0.142113E+01
1.30 0.934746E-01 0251098E+00 0.934746E-01 1.30 0.155228E+01 0.577859E+00 0.155228E+0]
140 0.820380E-01 0247527E+00 0.820380E-01 140 0.170366E+01 0.564646E+00 0.170366E+01
1.50 0.717494E-01 0244185E+00 0.717495E-01 1.50 0.187894E+01 0.552094E+00 0.187894E+01
1.60 0.625369E-01 0241048E+00 0.625369E-01 1.60 0208247E+01 0.540272E+00 0208247E+01
1.70 0.543248E-01 0238094E+00 0.543248E-01 1.70  0.231941E+01 0.529208E+00 0231941E+01
1.80 0.470362E-01 0.235306E+00 0.470362E-01 1.80 0.259587E+01 0.518398E+00 0259587E+0]
190 0.405944E-01 0232667E+00 0.405944E-01 1.90 0291918E+01 0.509320E+00 0291918E+01
2.00 0349241E-01 0230165E+00 0.349241E-01 2,00 0.329809E+01 0.500437E+00 0.329809E+01
2.10 0.299526E-01 0.227786E+00 0.299526E-01 2.10 0.374315E+01 0.492203E+00 0.374315E+01
220 0256104E-01 0225522E+00 0.256104E-01 220 0.426704E+01 0.484567E+00 0.426704E+01
2.30 0218320E-01 0223361E+00 0218320E-01 2.30 0438506E+01 0.477480E+00 0.488506E+01
240 0.185561E-01 0.221297E+00 0.185561E-01 240 0.561577TE+01 0.470890E+00 0.561577E+01
250 0.157259E-01 0219322E+00 0.157259E-01 2.50 0.648166E+01 0.464750E+00 0.648166E+01
2.60 0.132893E-01 0217429E+00 0.132893E-0] 2.60 0.751009E+01 0.459017E+00 0.751009E+01
270 0.111985E-01 0215613E+00 0.111985E-01 2.70 0.873439E+01 0.453648E+00 0.873439E+01
2.80 0.941050E-02 0.213868E+00 0.941051E-02 2.80 0.101953E+02 0.448608E+00 0.101953E+02
290 0.788631E-02 0212189E+00 0.788631E-02 290 0.119426E+02 0.443863E+00 0.119426E+02
3.00 0.659114E-02 0210572E+00 0.659114E-02 3.00 0.140373E+02 0.439384E+00 0.140373E+02
310 0.549399E-02 0209013E+00 0.549399E-02 3.10 0.165547E+02 0.435146E+00 0.165547E+02
320 0456744E-02 0207509E+00 0.456744E-02 320 0.195870E+02 0431125E+00 0.195870E+02
330 0.378729E-02 0.206056E+00 0.378729E-02 3.30 0232483E+02 0.427301E+00 0232483E+02
340 0313234E-02 0204651E+00 0.313234E-02 340 0276796E+02 0.423657E+00 0276796E+02
3.50 0.258410E-02 0203292E+00 0258410E-02 3.50 0.330555E+02 0.420177E+00 0.330555E+02
3.60 0212648E-02 0201976E+00 0.212648E-02 3.60 0.395927E+02 0.416848E+00 0.395927E+02
370 0.174557E-02 0.200700E+00 0.174557E-02 3.70 0.475607E+02 0.413656E+00 0.475607E+02
3.80 0.142939E-02 0.199462E+00 0.142939E-02 3.80 0.572954E+02 0.410592E+00 0.572954E+02
390 0.116765E-02 0.198261E+00 0.116765E-02 390 0.692160E+02 0.407646E+00 0.692160E+02
400 0.951564E-03 0.197095E+00 0.951564E-03 4.00 0.832471E+02 0.404809E+00 0.838471E+02
4.10 0.773630E-03  0.195961E+00 0.773629E-03 4.10 0.101846E+03 0.402075E+00 0.101846E+03
420 0.627496E-03  0.194859E+00 0.627496E-03 420 0.124038E+03 0.399435E+00 0.124038E+03
4.30 0.507787E-03 0.193786E+00 0.507787E-03 430 0.151462E+03 0.396884E+00 0.151462E+03
4.40 0.409974E-03 0.192741E+00 0.409974E-03 440 0.185428E+03 0.394417E+00 0.185428E+03
4.50 0.330250E-03 0.191724E+00 0.330250E-03 4.50 0227588E+03 0.392027E+00 0227588E+03
4.60 0265432E-03 0.190732E+00 0.265432E-03 4.60 0280036E+03 0.389712E+00 0280036E+03
4.70 0212861E-03 0.189765E+00 0212861E-03 4.70 0.345426E+03 0.387466E+00 0.345426E +03
4.80 0.170326F-03  0.188822E+00 0.170325E-03 480 0427126E+03 0.385286E+00 0.427126E+03
490 0.135992E-03 0.1837901E+00 0.135992E-03 490 0529425E+03 0.383168E+00 0.529425E+03
5.00 0.108344E-03 0.187002E+00 0.108344E-03 5.00 0.657792E+03 0.381109E+00 0.657792E+03
5.10 0.861324E-04 0.186124E+00 0.861324E-04 5.10 0.819209E+03 0.379105E+00 0.819210E+03
520 0.683285E-04 0.185265E+00 0.683285E-04 520 0.102261E+04 0377155E+00 0.102262E+04
530 0.540905E-04 0.184426E+00 0.540905E-04 530 0.127947E+04 0.375256E+00 0.127947E+04
540 0427299E-04 0.183605E+00 0.427298E-04 540 0.160448E+04 0.373405E+00 0.160448E+04
5.50 0.336853E-04 0.182802E+00 0.336853E-04 5.50 0201658E+04 0.371600E+00 0.201658E+04
5.60 0265006E-04 0.182015E+00 0.265006E-04 5.60 0254018E+04 0.369839E+00 0254018E+04
5.70 0.20R058E-04 0.181246E+00 0208058E-04 5.70 0.320680E+04 0.368120E+00 0.3206R0E+04
580 0.163017E-04 0.180491E+00 0.163017E-04 5.80 0.40S720E+04 0.366441E+00 0.405720E+04
5.90 0.127471E-04 0.179753E+00 0.127471E-04 5.90 0.514421E+04 0.364800E+00 0.514422E+04
6.00 0.994769E-05 0.179028E+00 0.994769E-05 6.00 0.653645E+04 0.363197E+00 0.653645E+04
6.10 0.774773E-05 0.178318E+00 0.774773E-05 6.10 0.832309E+04 0.361629E+00 0.832309E+4
620 0.602246E-05 0.177622E+00 0.602246E-05 620 0.106204E+05 0.360095E+00 0.106204E+05
6.30 0467226E-05 0.176939E+00 0.46T226E-05 630 0.135799E+05 0358593E+00 0.135800L+05

Table 1. Tabulated values for DAI(x), DAIE(x), EDATE(x), DBI(x), DBIE(x), and EDBIE(x).
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Before the exponentially scaled Airy and Bairy functions were used, the largest
positive value of the argument for the Bairy function that could be evaluated by the

computer without causing overflow errors was {(y) = { = 40. By using the
exponentially scaled Airy and Bairy functions, it was discovered that {__ could take on
extremely large values, for example, £ = 10" - 10'. Substituting {___into Eq.(3.13)

for {(y) resulted in the following equation for the upper limit of integration.

— Jk’(y) + [,3/(a,k§)2 ]gm (3.14)

Therefore, the upper limit of integration used in Eq.(3.6) could automatically be adjusted
to the maximum possible value regardless of the frequency selected. However, due to the
oscillatory nature of the Bessel function and the dependence of its argument on £, and r,
the integrand of Eq.(3.6) becomes increasingly difficult to integrate numerically as £,
increases (for a fixed r), because as the wave number of the Bessel function increases, the
function becomes more highly oscillatory. To ensure accurate results from the computer
code, the region of integration had to be divided into subintervals in performing the
numerical integration. This method enabled LSVOCN to calculate increasingly many
evanescent waves providing more accurate results.
B. COMPARISON OF LSVOCN WITH THE TIME-HARMONIC
FREE-SPACE GREEN'S FUNCTION FOR A HOMOGENOUS OCEAN
MEDIUM

1. Green‘s Function Test Case One - Vary the Source Sound-Speed

The first test case involved varying the source, operating at frequencies of
1000 Hz, 250 Hz, and 50 Hz, sound-speed while maintaining the surface sound-speed
fixed, using both positive and negative gradients for the square of the index of refraction.
Each case had an initial source sound-speed of 1515 m/s for the negative gradient of the
square of the index of refraction, and 1485 m/s for the positive gradient case. The source

and receiver depths were held constant at 150 meters, with the receiver located one meter
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in horizontal range from the source. For each successive run of the test case, the source
sound-speed was decreased/increased by a factor of 3 m/s until 1501 mv/s and 1499 m/s
was reached, respectively, while maintaining the surface sound-speed constant at 1500
m/s. Thus, the source sound-speed was never allowed to take on a value of 1500 m/s,
ensuring that the Airy function solution of LSVOCN, which assumed a sound-speed
profile where the square of the index of refraction was a linear function of depth, would
remain valid while at the same time forcing the modeled ocean medium to become more
homogeneous. If the derived Airy function solution and the corresponding computer code
in LSVOCN were correct, then as the source sound-speed approached the surface
sound-speed, the velocity potential (magnitude and phase) values calculated by LSVOCN
would converge approximately to the velocity poténtial (magnitude and phase) values
predicted by Eq.(3.4) and (3.5), respectively. Because we were making calculations at the
source depth, the DIFF term given by Eq.(3.9) was equal to zero, which made the
exp(-DIFF) term in Eq.(3.10) equal to one. This condition caused the oscillations of the
integrand in Eq.(3.6) to decay very slowly, thus requiring longer integration causing an
increase in CPU time. A summary of these test cases is included as Tables 2 through 7.
The Delta's and percentage differences included in Tables 2 through 7 were

calculated as follows:

1. Delta magnitude = LSVOCN magnitude - Green's function magnitude
2. Delta phase = LSVOCN phase - Green's function phase

. . LSVOCN mag - Green’s function mag
0 — 0
3. % Difference magnitude Groen's function mag x 100%

LSVOCN phase - Green’s finction phase
Green’s function phase

x 100%

4. % Difference phase =

The data in Tables 2 through 7, show that as the source sound-speed approaches
the surface sound-speed, making the modeled ocean medium more homogeneous, the
calculated velocity potential (magnitude and phase) values from LSVOCN approach the

velocity potential (magnitude and phase) values predicted by the Green's function - our

first validation.
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SOURCE FREQUENCY = 1000Hz
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s

Magnitude Phase Magnitude Phase Delta Delta
Green's Func | Green's Func | LSVOCN LSVOCN Magnitude Phase
mYs Deg. m'ls Deg. w/s Deg.

0.0795775 | 302.37624 § 0.0787327 302.557 J -0.0008448 0.18076 § -1.0616066 | 0.0597798
0.0795775 | 301.90476 } 0.0787842 302.059 { -0.0007933 0.15424 J -0.9968898 1 0.051089
0.0795775 § 301.43141 § 0.0788504 301.559 § -0.0007271 0.12759 ] -0.9137005 § 0.042328
0.0795775 § 300.95618 § 0.0789223 301.039 § -0.0006552 0.08282 -0.8233483 | 0.027519
0.0795775 § 300.47904 | 0.0790248 300.502 } -0.0005527 0.02296 | -0.6945431 § 0.0076411
0.0795775 § 300.15989 § 0.0791721 300.148 § -0.0004054 -0.01189 } -0.5094405 ] -0.0039612

Table 2. Comparison of Green's Function with LSVOCN for Test Case 1
(Vary the Source Sound-Speed) - n(y) with Negative Gradient.

SOURCE FREQUENCY = 250Hz
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s ’ ,
Magnitade Phase Magnitude Delta Delta % Difference
Green's Func | Green'sFunc § LSVOCN LSVOCN Magnitude Phase Magnitude
mYs Deg. ms Deg. m/s Deg.

0.0795775 1 120.59406 ] 0.0791376 | 120.992 1 -0.0004399 | 0.39794 | 0.5527944 | 0.3299831
0.0795775 | 120.47619 | 0.0791609 | 12083 { -0.0004166 | 0.35381 [ -0.5235148 | 0.2936763
0.0795775 1 120.35785 | 0.0792156 | 120.704 | -0.0003619 | 0.34615 | -0.4547768 | 0.2876007
0.0795775 | 12023904 | 0.07923 120.502 | -0.0003475 | 0.26296 { -0.4366812 | 0.2186977
0.0795775 | 120.11976 ] 0.0793777 ] 120.422 | -0.0001998 | 0.30224 § -0.251076 | 0.2516156
0.0795775 | 120.03997 | 0.0794475 | 120263 [ -0.00013 1 022303 I -0.1633628 ] 0.1857964

Table 3. Comparison of Green's Function with LSVOCN for Test Case 1
(Vary the Source Sound-Speed) - n%(y) with Negative Gradient.

SOURCE FREQUENCY = 50Hz
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s
Magnitude Phase Magnitude Phase Delta
Green's Func | Green's Func] LSVOCN LSVOCN Phase
mis - Deg. w'/s Deg. Deg.

0.0795775 § 168.11881 § 0.079782 168.366 0.0002045 0.24719 0.2569822 § 0.1470329
0.0795775 | 168.09524 ] 0.0797383 168.322 0.0001608 0.22676 0.2020672 § 0.1348997
0.0795775 | 168.07157 § 0.0797825 168.286 0.000205 0.21443 0.2576105 § 0.1275826
0.0795775 § 168.04781 § 0.079723 168.231 0.0001455 0.18319 0.1828406 § 0.1090106
0.0795775 § 168.02395 § 0.0797083 168.172 0.0001308 0.14805 0.1643681 § 0.0881124
0.0795775 § 168.00799 § 0.0798172 168.133 0.0002397 0.12501 0.3012158 § 0.0744072

Table 4. Comparison of Green's Function with LSVOCN for Test Case 1
(Vary the Source Sound-Speed) - n?(y) with Negative Gradient.
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SOURCE FREQUENCY = 1000Hz
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s

Sound Speed | Magnitude Phase Magnitude Phase Delta Delta % Difference | % Difference
Source Green's Fanc § Green's Func] LSVOCN LSVOCN Magnitnde Phase Magnitude Phase
m/s m'/s Deg. m/s Deg. m/s Deg.

1485 0.0795775 | 297.57576 | 0.0787358 297.709 -0.0008417 0.13324 -1.057711 0.0447752
1488 0.0795775 | 298.06452 | 0.0787811 298.174 -0.0007964 0.10948 -1.0007854 § 0.0367303
1491 0.0795775 | 298.55131 § 0.0788484 298.647 -0.0007291 0.09569 -0.9162138 | 0.0320514
1494 0.0795775 § 299.03614 | 0.0789214 299.099 -0.0006561 0.06286 -0.8244793 | 0.0210209
1497 0.0795775 | 299.51904 | 0.079039 299.546 -0.0005385 0.02696 -0.6766988 1 0.0090011
1499 0.0795775 | 299.83989 § 0.079143 299.839 -0.0004345 § -0.00089 |} -0.5460086 | -0.0002968

Table 5. Comparison of Green's Function with LSVOCN for Test Case 1
(Vary the Source Sound-Speed) - n*(y) with Positive Gradient.

SOURCE FREQUENCY = 250Hz
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s

Sound Speed | Magnitude Phase Magnitude Phase Delta Delta % Difference § % Difference
Source Green's Func | Green's Func |  LSVOCN LSVOCN Magnitade Phase Magnitude Phase
/s m'/s Deg. w'is Deg. m/s Deg.

1485 0.0795775 { 119.39394 § 0.0791194 119.774 -0.0004581 0.38006 -0.5756652 1 0.3183244
1488 0.0795775 { 119.51613 | 0.0791708 119.885 -0.0004067 0.36887 -0.5110741 | 0.3086362
1491 0.0795775 1 119.63783 | 0.0791928 119.958 -0.0003847 0.32017 -0.4834281 0.267616
1494 0.0795775 1 119.75904 ¥ 0.0792593 120.06 -0.0003182 0.30096 -0.3998618 § 0.2513046
1497 0.0795775 | 119.87976 } 0.0793556 120.145 -0.0002219 0.26524 -0.2788477 0.221255
1499 0.0795775 § 119.95997 F 0.0794502 120.185 -0.0001273 0.22503 -0.1599698 | 0.1875876

Table 6. Comparison of Green's Function with LSVOCN for Test Case 1
(Vary the Source Sound-Speed) - #n%(y) with Positive Gradient.

SOURCE FREQUENCY = 50Hz
SOURCE DEPTH = RECEIVER DEPTH = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s

Sound Speed § Magnitude Phase Magnitude Phase Delta Deltz % Difference § % Difference
Source Green's Func | Green's Func | LSVOCN LSVOCN Magnitude Phase Magnitode Phase
w/s m'/s Deg. w'/s Deg. m'/s Deg.
1485 0.0795775 § 167.87879 | 0.0797431 168.123 0.0001656 0.24421 0.208099 0.145468
1488 0.0795775 | 167.90323 ] 0.0797786 168.138 0.0002011 0.23477 0.2527096 § 0.1398246
1491 0.0795775 § 167.92757 | 0.0797322 168.136 0.0001547 0.20843 0.1944017 0.124119
1494 0.0795775 § 167.95181 § 0.0797651 168.142 0.0001876 0.19019 0.233745 0.1132408
1497 0.0795775 } 167.97595 § 0.0797772 168.135 0.0001997 0.15905 0.2509503 § 0.0946862
1499 0.0795775 ] 167.99199 | 0.0797195 168.103 0.000142 0.11101] 0.1784424 | 0.0660805

Table 7. Comparison of Green's Function with LSVOCN for Test Case 1
(Vary the Source Sound-Speed) - n%(y) with Positive Gradient.
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2. Green's Function Test Case Two - Vary the Horizontal Range

The second test case involved varying the horizontal range while maintaining the
source and receiver depths fixed at 150 meters. For this case the surface and source
sound-speeds are not varied. If the receiver is fixed at the source depth (150 meters) and
the horizontal range is increased, then the magnitude of the velocity potential should
decrease by a factor of 1/4nR, independent of frequency, as predicted by Eq.(3.4).
Furthermore, it should be observed that the phase varies as predicted by Eq.(3.5):

Apf=1t(i1 - -Z—c@) (3.15)

The above observations are reasonable assumptions to make even though the modeled
ocean medium is not homogeneous. As long as the receiver is maintained at the same
depth as the source, then the sound speed is constant, which simulates a homogeneous
ocean medium.

To conduct the second Green's function test case, the receiver depth and source
depth are both fixed at 150 meters. The surface sound-speed is fixed at 1500 m/s and the
source sound-speed is fixed at 1515 m/s for a negative gradient for the square of the
index of refraction, and 1485 m/s for a positive gradient for the square of the index of
refraction. Horizontal range values selected were 2.0, 3.0, and 5.0 meters. These values
were selected based on the amount of CPU time required to calculate the velocity
potential (magnitude and phase) for each selected receiver depth, horizontal range pair.
Because we were making calculations at the source depth, the DIFF term given by
Eq.(3.9) was equal to zero, which made the exp(-DIFF) term in Eq.(3.10) equal to one.
This condition caused the oscillations of the integrand in Eq.(3.6) to decay very slowly,
thus making integration more difficult resulting in more CPU time being required. In
addition, as k_increases (for a fixed r) the zeroth-order Bessel function in Eq.(3.6)
oscillates more rapidly, making the numerical integration more difficult. Any calculation
requiring more than 60 minutes of CPU time was stopped by the computer. The test case

results are summarized in Tables 8 and 9. Calculations that required greater than 60
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minutes of CPU time are denoted by: >60 min. The delta's and percentage differences

were calculated in the same manner as discussed previously. The data in Tables 8 and 9

show that as the horizontal range increases while maintaining the receiver at the source

depth, the velocity potential (magnitude and phase) calculated by LSVOCN behaves

according to the Green's function for a free-space homogeneous ocean medium as

predicted by Eq.(3.4) and Eq.(3.5) with S, =1 - our second validation.

SOURCE DEPTH = RECEIVER DEPTH = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s SOURCE SOUND-SPEED = 1515 m/s

Frequency § Range Green's Green's | LSVOCN | LSVOCN Deita Delta % % DifTerence
Hertz meters Func Func Magnitode Phase Magnitude Phase Difference Phase
Magnitude | Phase m’/s Deg. m'/s Deg. Magnitade
m¥s Deg.
1000 2 0.0397887§64.752475] >60 min | >60 min N/A N/A N/A N/A
3 0.02652581187.12871] >60 min | >60 min N/A N/A N/A N/A
5 0.0159155471.881188] >60 min | >60 min N/A N/A N/A N/A
250 2 0.0397887161.18811940.0395919%  61.221 -0.0001968] 0.032881] -0.4946128 0.0537376
3 0.0265258]1.7821782}0.0264635 2.343 -0.00006231 0.5608218] -0.2348657 31.4683346
5 0.0159155] 242.9703 | >60 min § >60 min N/A N/A N/A N/A
50 2 0.03978871156.237620.0397634] 156.67 §-0.0000253 0.43238] -0.0635859 0.2767451
3 0.02652581144.35644]0.0264378 ] 144.937 -0.000088 0.58056] -0.3317525 0.4021712
5 0.01591550120.59406J0.0157484] 121.152 | -0.0001671 0.55794] -1.0499199 0.4626596

Table 8. Comparison of Green's Function with LSVOCN for Test Case 2
(Vary Horizontal Range ) - n%(y) with Negative Gradient.

SOURCE DEPTH = RECEIVER DEPTII = 150 METERS
SURFACE SOUND-SPEED = 1500 m/s SOURCE SOUND-SPEED = 1485 m/s

Frequency Range Green's Green's LSVOCN LSYOCN Debta Delta % %
Hertz Weters Fanc Func Magnitude Phase Magnitude Phase Difference | Difference
Magnitude Phase m's Deg. m¥/s Deg. Magnitode Phase
m'/s Deg.
1000 2 0.0397887 1 55.151515 1 >60 min >60 min N'A N/A N/A N/A
3 0.0265226 | 172.72727 §} >60 min >60 mun N/A N/A NA N/A
5 0.0159155 | 47.878788 | >60 min >60 min N'A N/A N/A N/A
250 2 0.0397887 | 58.787879 } 0.0396074 58.825 -0.0001813F 0.037121] -0.455657] 0.063144
3 0.0265226 § 358.18182 § 0.0264458 | 358.687 §-0.0000768 0.50518]-0.2895644] 0.1410401
5 0.0159155 | 236.9697 >60 min >60 min N/A N/A N/A N/A
50 2 0.0397887 | 155.75758 § 0.0397803 1 156.212 0.0000006 0.45442F 0.001508f 0.2917482
3 0.0265226 § 143.63636 § 0.0264342 } 144.218 ]-0.0000884 0.58164]-0.3333007] 0.4049393
5 0.0159155 1 119.39394 § 0.0157441 119.928 §-0.0001714 0.53406)-1.0769376] 0.4473091

Table 9. Comparison of Green's Function with LSVOCN for Test Case 2
(Vary Horizontal Range ) - n?(y) with Positive Gradient.
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As a final note on the second Green's function test case, as can be observed from
Tables 8 and 9, the delta magnitudes all agree out to three significant digits, and in some
cases better. This fact was consistent with the magnitude differences as calculated in the
first Green's function test case. Also, for small velocity potential phases, small phase
errors result in large percentage differences, as expected.

3. Green's Function Test Case Three - Vary the Receiver Depth

The third Green's function test case involved varying the receiver depth above
and below the source depth, while maintaining the source and surface sound-speeds fixed
at 1515/1485 m/s and 1500 m/s, respectively. As was stated before, the modeled ocean
medium is not homogeneous; however, for the previous two Green's function tests, the
receiver depth was maintained at the source depth and the source sound-speed was varied
to more closely match the surface sound-speed (Test Case 1) or maintained constant
(Test Case 2) which simulated a homogeneous ocean medium. For this case, the receiver
was moved slightly above and below the source depth, and as a result, the Green's
function results are less valid. As can be seen from Figure 9, even though the receiver is
not located at the source depth, the actual change in the sound speed at the receiver is
very small. Because the ocean medium acts very much like a homogeneous medium
when receivers and sources are "close", the velocity potential (magnitude and phase)
computed using the free-space Green's function for a homogeneous ocean medium is a
valid approximation. This test case allowed us to validate the remaining part of the
computer code in LSVOCN for a source and receiver at different depths, prior to
comparing it with the RRA Algorithm. This test case was conducted with a source
operating at 1000 Hz (excluding cases for the source operating at 250 Hz and 50 Hz since
validation at one frequency was adequate). The third Green's function test case is

summarized in Table 10. The test case was conducted four times;

1. For the square of the index of refraction with a negative gradient and a
receiver depth of 150.5 meters and a horizontal range of 0.8660254 meters.

2. For the square of the index of refraction with a negative gradient and a receiver
depth of 149.5 meters and a horizontal range of 0.8660254 meters.
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3. For the square of the index of refraction with a positive gradient and a receiver
depth of 150.5 meters and a horizontal range of 0.8660254 meters.

4. For the square of the index of refraction with a positive gradient and a receiver

depth of 149.5 meters and a horizontal range of 0.8660254 meters.

Region I: Receiver above the source

Receiver Depth

1l R=1met
149.5 meters meter

r=0.8660254 meters
Source depth $ >

150 meters

Receiver Depth
150.5 meters

Region II: Receiver below the source

Figure 9. Geometry for Green's Function Test Case 3 (Vary Receiver Depth).

The surface sound-speed is maintained at 1500 m/s. The source sound-speed is
maintained at 1515 m/s when the square of the index of refraction has a negative
gradient, and 1485 m/s when the square of the index of refraction has a positive gradient.
Calculations are based on Eq.(3.4) and Eq.(3.5) where R and c are treated as variables.
As can be observed from Table 10, the change in the sound speed at the location of the
receiver is very small, making our assumptions for this test case reasonable. Analysis of
the data presented in Table 10 show that LSVOCN calculated values for the velocity
potential (magnitude and phase) are approximately equal to those predicted by the
Green's function - our third validation. The Delta's and percentage differences were

calculated in the same manner as discussed before.
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SURFACE SOUND-SPEED = 1500 M/S
r = 0.8660254 METERS, FREQ = 1000 Hz

Source | Receiver Sound f Receiver] Green's Green's §J LSVOCN JLSVOCN Delta Delta % Diff % Dift
Sound Speed Depth Func Func Mag Phase Mag Phase Mag Phase
Speed wis meters | Magnitude | Phase m’/s deg. mi/s deg.

m/s m/s deg.

1515 §1514.94925011 149.5 §0.0795775]302.3683 §0.0795773] 302.37 §-0.0000002 ] 0.0017 [ -0.0002513} 0.0005622
1515 } 1515.0507551 § 150.5 §0.0795775]302.3842 } 0.079575 § 302.381 -0.0000025 | -0.0032 { -0.0031416] -0.0010583
1485 § 1485.0492549 § 149.5 §0.0795775§297.5838 ] 0.079575 | 297.58 |-0.0000025 } -0.0038 } -0.0031416} -0.001277
1485 § 1484.95075 } 150.5 §0.0795775§297.5677 ] 0.079577 | 297.569 -0.0000005 § 0.0013 -0.0006283] 0.0004369

Table 10. Comparison of Green's Function with LSVOCN for Test Case 3
(Vary the Receiver Depth) - n%(y) with Negative and Positive Gradients.

C. COMPARISON OF LSVOCN WITH THE RECURSIVE RAY ACOUSTICS
ALGORITHM

1. Test Preparation

The RRA Algorithm calculates the magnitude in Pascals and phase in degrees of
the acoustic pressure along a ray path. The source is modeled as a time-harmonic,
omnidirectional point source, with its strength represented by a source level (SL) value in
decibels relative to one micro-pascal (rms). The "Airy function solution" is in terms of
velocity potentials and is based on a time-harmonic, omnidirectional point source
modeled by a unit amplitude impulse function. Thus, before the magnitudes and phéées
from the RRA Algorithm and LSVOCN (the "Airy function solution") could be
compared, the velocity potential expressions were transformed into acoustic pressure

expressions using the following equation for time-harmonic fields [Ref. 2, Chapter 2]

pAr.y) = —J27fpoQAr.y) (3.16)

where f is the frequency of the source in Hz, and Po is the ambient or equilibrium
density of the fluid medium in kg/m’.

In addition, the magnitudes from LSVOCN had to be made equivalent to the
magnitudes computed by the RRA Algorithm by relating the source level in decibels to
the amplitude of the impulse function used to model the omnidirectional point source in

LSVOCN. This was accomplished by deriving a magnitude scale factor that relates a




source level in decibels to the source strength of a spherical sound source operating in the

monopole mode of vibration as the radius of the sphere approaches zero [see Eq.(3.3)].

Thus, substituting Eq.(3.3) into Eq.(3.16) yields

pf(R,G,w)=+jfpoSo&g@ ,R>0. (3.17)
The magnitude of Eq.(3.17) is given by

lprR,0,v)| =225, R >0 (3.18)
Thus, the peak acoustic pressure, P, , at R equal to one meter is

Po=|pAR .0, y)|,, = fp" (3.19)

Therefore, the source strength, S, , in m?/s, is given by

S, = 2o (3.20)

The peak acoustic pressure, P,, in Pascals [Ref. 2, Chapter 1] due to a given source level

in decibels is given by:

Po=42 P,eflo(zg) (3.21)

where P, is the reference pressure equal to one micro-pascal (rms), and SL is the source
level of the source in decibels relative to P,_,. Since the source level used by the RRA
Algorithm is a known constant (180.0 dB), the peak acoustic pressure can be calculated
using Eq.(3.21). This result can then be substituted into Eq.(3.20) allowing the source
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strength to be computed. The resulting source strength value, S,, is the magnitude scale
factor that was used to multiply the output from LSVOCN.

In summary, the conversion process to make the LSVOCN magnitude and phase
equivalent to that computed by the RRA Algorithm is as follows [multiply the right-hand
side of Eq.(3.16) by Eq.(3.20)]:

Pf(",.)’)=_j27tfpo‘?’_‘;3(l)f("a}’)=‘j475P0(Pf(r,Y), (3.22)

where P, is given by Eq.(3.21). Equation (3.22) was added as FORTRAN computer code
to LSVOCN so that the conversion process would be taken care of automatically.

2. Comparison of the RRA Algorithm with LSVOCN when n’(y) has a

Negative Gradient

The RRA Algorithm was used to simulate various ray paths propagated through
the ocean medium when the square of the index of refraction was a linear function of
depth with a negative gradient, corresponding to a positive gradient sound-speed profile.
Two ray paths identified by the initial launch angle, B, , were selected for each of the test
frequencies, 1000 Hz, 250 Hz, and 50 Hz. The sound-speed profile and the ray
propagation path for each ray is illustrated in Figure 10. Launch angles were selected so
that the ray paths did not interact with the ocean surface or bottom, thus ensuring that the
magnitude and phase calculated by the RRA Algorithm were for a free-space propagation
problem. Test points along each ray path were selected. The depth (receiver depth) and
the horizontal range (HRNG) corresponding to these points were recorded and used as
inputs to LSVOCN. The comparison between the RRA Algorithm and LSVOCN
magnitude and phase values are summarized in Tables 11 through 13, where the asterisk
"*" means that the entire row corresponds to data at the location of a turning point. The
calculated values in Tables 11 through 13 were obtained as follows:

1. Delta magnitude = RRA Magnitude - LSVOCN Magnitude

2. Delta phase = RRA Phase - LSVOCN Phase




3. Initial phase offset = Delta phase of the first point for each ray

4. Adj RRA Phase = (RRA Phase - Initial phase offset)
a) Add 360°if Adj RRA Phase angle is negative
b) Subtract 360° if Adj RRA Phase angle is greater than 360°
¢) Do not add or subtract if Adj RRA Phase angle is positive and less than 360°

RRA Magnitude - LSVOCN Magnitude

o/ T . _
5. % Difference Magnitude LSVOCN Magnitade

x 100%

Adj RRA Phase - LSVOCN Phase
LSVOCN Phase

6. % Difference Phase = x 100%

Analysis of the data if Tables 11 through 13 indicate that the magnitudes and
phases calculated by the RRA Algorithm match reasonably well with the magnitudes and
phases calculated by LSVOCN. Note that there is an initial phase difference that exists
between the RRA Algorithm and LSVOCN. The RRA Algorithm begins with zero phase
and calculates the phase thereafter based on travel time as a ray propagates. In order to
correct for this initial phase difference, each RRA phase angle after the first data point on
each ray is adjusted by an amount equal to the delta phase of the first data point. After
the RRA phase has been adjusted, a valid comparison between the RRA phase and
LSVOCN phase can be performed. It can further be observed that the percentage phase
error tends to increase as the ray propagates. This seems reasonable since small erTors
made in calculating travel time and, hence, phase in the beginning accumulate as the ray
propagates further from the source. These phase errors could possibly be reduced by

selecting a smaller arc length step size used by the RRA Algorithm.
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SURFACE SOUND-SPEED = 1500 m/s, SOURCE-SOUND SPEED = 1515 m/s
SOURCE DEPTH = 150 m, n’(y) WITH NEGATIVE GRADIENT
FREQUENCY = 1000 HZ, "*" TURNING POINT DATA

Receiver | Receiver | RRA RRA [LSVOCN|LSVOCN | DELTA | DELTA | AdjRRA | %DIFF | % DITF
Depth HRNG Mag Phase Mag Phase Mag Phase Phase Mag Phase

meters meters | Pascals | Degree | Pascals | Degrees | Pascals Degrees | Degrees

B,=82°

150.139 0.99 1414.21 1122.377{ 1414.06 | 212.411 0.15 -90.034 N/A 0.01061 N/A

211.757 500.178 | 2.80646 | 17.022 | 2.79558 | 107.978 } 0.01088 | -90.956 107.056 0.38919 | -0.85388

256.408 ]1000.164 | 1.40685 [215.202] 1.39683 | 303.34 0.01002 | -88.138 | 305.236 0.71734 0.62504

283.987 1500.38 | 0.94006 219.763] 0.9673 | 307.452 |-0.02725] -87.689 309.797 | -2.81609 | 0.76272

*294.58 |2056.996 | 0.68751 | 218.93 | 0.6809 304.917 | 0.00661 | -85.987 | 308.964 | 0.97077 1.32725

223.48 3499.913 | 0.40689 |145.679] 0.43452 2412  |-0.02762] -95.521 235713 | -6.35874 | -2.27488

90.742 4499.953 | 0.31804 |348.299] 0.2707 75.886 ] 0.04733 | 272.413 78.333 17.48799 1 3.22457

1 4988.762 | 0.28757 |238.727] 0.30947 | 337.044 | -0.0219 | -98.317 326.865 ] -7.07661 | -3.02008
!)()0

BD—
150 1 1414.21 1122376} 1410.77 | 212.154 3.44 -89.778 N/A 0.24384 N/A

141.636 499.907 | 2.82896 ]325.936] 2.83278 | 56.813 |-0.00382 269.123 55.714 -0.13485 | -1.93442
116.533 999.753 | 1.41456 | 39.786 | 1.44011 13149 ]-0.02555] -91.704 | 129.564 | -1.77417 | -1.46475

74.652 1499.98 | 0.94282 1209.696] 0.96954 | 302.063 [-0.026721 -92.367 299.474 ] -2.75595 | -0.85711
16.029 2000.033 | 0.7071 }341.127] 0.66581 | 69.119 | 0.04129 272.008 70.905 6.20147 2.58395

Table 11. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by B, .

SURFACE SOUND-SPEED = 1500 m/s, SOURCE SOUND-SPEED = 1515 m/s
SOURCE DEPTH = 150 m, n’(y) WITH NEGATIVE GRADIENT
FREQUENCY = 250 HZ, "*" TURNING POINT DATA

Receiver | Receiver| RRA RRA | LSVOCN | LSVOCN | DELTA | DELTA AdjRRA | %DIFF | %DIFF
Depth HRNG Mag Phase Mag Phase Mag Phase Phase Mag Phase

meters meters | Pascals Degree Pascals Degrees | Pascals | Degrees Degrees

B=82°

150.139 0.99 1414.21 300.594 | 1415.07 30.646 -0.86 269.948 N/A -0.06077 N/A

211.757 | 500.178 | 2.80646 4.255 2.80952 93.273 | -0.00306 | -89.018 94.307 |-0.10892 ] 1.10857

256.408 ]1000.164] 1.40685 233.8 1.37561 § 325296 | 0.03124 | -91.496 | 323.852 [ 2.27099 -0.4439

283.987 1 1500.38 | 0.94006 | 234.941 | 0.90205 | 326.776 0.03801 -91.835 324993 | 4.21374 | -0.54563

* 294.58 12056.996] 0.68751 | 234.732 | 0.65279 321.869 | 0.03472 | -87.137 324.784 | 5.31871 | 0.90565

223.48 13499.913} 0.40689 36.42 0.41643 | 133.076 | -0.00954 | -96.656 126.472 | -2.2909 | 4.96258

90.742 _14499.953} 0.31804 | 267.075 | 0.27485 | 352.622 0.04319 | -85.547 | 357.127 [15.71403| 1.27757

1 4988.762] 0.28757 59.682 0.2389 151.482 | 0.04867 -91.8 149.734 120.37254 | -1.15393

B.=90°

150 1 1414.21 300.594 1415.54 30.689 -1.33 269.905 N/A -0.09396 N/A

141.636 | 499.907 | 2.82896 | 171.484 | 2.82851] 260.489 | 0.00045 -89.005 | 261.579 { 0.01591 | 0.41844

116.533 1 999.753 | 1.41456 | 279.946 1.42205 11.855 -0.00749 | 268.091 10.041 -0.5267 |-15.30156

74.652 1499.98 | 0.94282 | 232.424 | 0.98967 | 322.027 | -0.0468% -89.603 322519 | -4.7339 | 0.15278

16.029 | 2000.033f 0.7071 355.282 0.7486 87.039 -0.0415 268.243 85.377 ] -5.5436% | -1.90949

Table 12. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by Bo.




SURFACE SOUND-SPEED = 1500 m/s, SOURCE SOUND-SPEED = 1515 m/s
SOURCE DEPTH = 150 m, n’(y) WITH NEGATIVE GRADIENT

‘ FREQUENCY = 50 HZ, "*" TURNING POINT DATA

Receiver | Receiver | RRA RRA |LSVOCN|LSVOCN | DELTA | DELTA | AdjRRA % DIFF
I Depth HRNG Mag Phase Mag Phase Mag Phase Phase Mag

meters meters Pascals Degree Pascals | Degrees Pascals Degtees Des!ees

 B=82°
§ 150.139 0.99 1414.21 {348.119] 1396.42 | 77.964 17.79 | 270.155 N/A 1.27397 N/A

§ 211.757 | 500.178 | 2.80646 ]144.851] 2.7779 | 235.583 | 0.02856 | -90.732 234.696 1.02811 | -0.37651

256.408 |]1000.164 | 1.40685 | 334.76 | 1.44067 | 63.371 |]-0.03382 | 271.389 64.605 -2.34752 | 1.94726

283.987 | 1500.38 | 0.94006 §190.988] 0.89268 | 281.376 | 0.04738 | -00.388 280.833 5.30761 | -0.19298

* 294.58 §2056.996 ] 0.68751 ]118.9461 0.7305 | 207.172 §-0.04299 | -88.226 208.791 -5.88501 | 0.78148

223.48 §3499.913 | 0.40689 | 7.284 10.361466]1 99.872 | 0.04542 | -92.588 97.129 12.66604 | -2.74652

90.742 14499.953 | 0.31804 1269.415] 0.36089 | 355.423 |-0.04285 ] -86.008 359.26 -11.873421 1.07956

1 4988.762 | 0.28757 | 83.936 | 0.32794 | 168.751 |-0.04037} -84.815 173.781  |-12.31018} 2.98072

B=90°
150 1414.21 |348.119] 142534 | 78.211 -11.13 | 269.908 N/A -0.78087 N/A

i 141.636 2.82896 [178.297] 2.8749 | 267.929 |-0.04594] -89.632 268.389 -1.59797 1 0.17169

116.533 1.41456 }1343.989] 1.4166 75872 |-0.00204 { 268.117 74.081 -0.14401 | -2.36055

74.652 0.94282 1118.485] 0.95694 | 205.742 §-0.01412 | -87.257 208.577 -1.47554 | 1.37794
 16.029 0.7071 ]215.056{ 0.67256 | 302.346 | 0.03454 | -87.29 305.148 5.1356 0.92675

Table 13. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by B, .

3. Comparison of the RRA Algorithm with LSVOCN when n*(y) has a
Positive Gradient

The RRA Algorithm was used to simulate various ray paths propagated through
the ocean medium when the square of the index of refraction was a linear function of
depth with a positive gradient, corresponding to a negative gradient sound-speed profile.
Two ray paths identified by the initial launch angle, B, , were selected for each of the test
frequencies, 1000 Hz, 250 Hz, and 50 Hz. The sound-speed profile and the ray
propagation path for each ray is illustrated in Figure 11. Launch angles were selected so
that the ray paths did not interact with the ocean surface or bottom, thus ensuring that the
magnitude and phase calculated by the RRA Algorithm were for a free-space propagation
problem. Test points along each ray path were selected. The depth (receiver depth) and
the horizontal range (HRNG) corresponding to these points were recorded and used as
inputs to LSVOCN. The comparison between the RRA Algorithm and LSVOCN
magnitude and phase values are summarized in Tables 14 through 16, where the asterisk

"*" means that the entire row corresponds to data at the location of a turning point. The
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calculated values in Tables 14 through 16 were obtained in the same manner as was done
for Tables 11 through 13. Analysis of the data in Tables 14 through 16 indicate that the
magnitudes and phases calculated by the RRA Algorithm match reasonably well with the
magnitudes and phases calculated by LSVOCN. Note that there is an initial phase
difference that exists between the RRA Algorithm and LSVOCN. The RRA Algorithm
begins with zero phase and calculates the phase thereafter based on travel time as a ray
propagates. In order to correct for this initial phase difference, each RRA phase angle
after the first data point on each ray is adjusted by an amount equal to the first delta
phase of the first data point. After the RRA phase has been adjusted, a valid comparison
between the RRA phase and LSVOCN phase can be performed. It can further be
observed that the percentage phase error tends to increase as the ray propagates. This
seems reasonable since small errors in the beginning accumulate as the ray propagates
further from the source. These phase errors could possibly be reduced by selecting a
smaller arc length step size used by the RRA Algorithm. Also, for small acoustic

pressure phases, small errors result in large percentage differences, as expected.

SURFACE SOUND-SPEED = 1500 m/s, SOURCE SOUND-SPEED = 1485 m/s
SOURCE DEPTH = 150 m, n’(y) WITH POSITIVE GRADIENT
FREQUENCY = 1000 HZ, "*" TURNING POINT DATA
Receiver | Receiver RRA RRA |LSVOCN |LSVOCN| DELTA | DELTA | RRA Adj| %DIFF | %DIFF

Depth HRNG Mag Phase Mag Phase Mag Phase Phase Mag Phase
melers meters Pascals Degree Pascals | Degrees | Pascals | Degrees Des[ees

B,=98°

149.861 0.99 1414.21 ] 117.577 | 1414.14 | 207.61 0.07] -90.033 N/A 0.00495 N/A
88.159 | 500.168 | 2.80645 | 120.409 | 2.82886 | 209.598 | -0.02241] -89.189] 210.442 -0.79219 0.40268
43.255 11000.132 | 140682 | 77.211 1.36943 | 166.044 0.03739] -88.833] 167.244] 2.73033 0.7227
15.25 1500.325 1 0.94002 | 210.833 | 0.97634 | 299.001 | -0.03631] -88.168] 300.866] -3.72002 0.62374
> 3967 |2077.678 | 0.68067 | 138.344 | 0.64677 | 231.267 0.03380] -92923| 228.377] 5.24143| -1.24964
72.257 | 3498.868 | 0.40695 | 270.66 | 0.38583 6.948 0021111 263.712 0.693] 5.47391] -90.02591
202.264 | 4499.27 | 0.31802 | 42.263 | 0.36148 | 135816 | -0.04346] -93.553] 132.29¢ -12.0228] -2.59174
290.462 | 4988.36 0.28753 | 120.254 | 0.23971 | 208.418 0.047811 -88.1641 209.0871 19.94911 0.32099
B,=90°

150 1 1414.21 | 117.576 | 1399.25 | 207.709 1496] -90.133 N/A 1.06914 N/A
158.268 | 499.534 | 2.83107 | 176.655 | 2.78723 | 266.248 0.04384] -89.593] 266.788| 1.57289 0.20282
183.11 999.394 | 1.41507 8.009 1.45581 97.086 -0.04074] -89.077 98.142] -2.79844 1.0877
224.566 | 1499.657 1 0.94303 | 288.292 | 0.95899 | 20.833 -0.01597} 267.459 18.425] -1.66425] -11.55858
282.604 | 1999.778 | 0.70719 { 162.897 | 0.70929 | 249.048 | -0.00211] -86.151 253.03[ -0.29607 1.59889

Table 14. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different
Receiver Depth and Horizontal Rangs Points Located on Two Separate Sound Rays, Identified by ﬁo.
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SURFACE SOUND-SPEED = 1500 m/s, SOURCE SOUND-SPEED = 1485 m/s
SOURCE DEPTH = 150 m, n’(y) WITH POSITIVE GRADIENT

FREQUENCY = 250 HZ, "*" TURNING POINT DATA
Receiver | Receiver RRA RRA |LSVOCN|LSVOCN| DELTA | DELTA | RRA Adj | % DIFF
Depth HRNG Mag Phase Mag Phase Mag Phase Phase Mag
meters meters Pascals Degree Pascals Dengees Pascals Degnees Degrees
p=98°

| 149.861 0.99 1414.21 | 299.394 | 1415.07 | 29.447 —0.86 | 269.947 N/A -0.06077 N/A
88.159 | 500.168 | 2.80645 | 120.102 | 2.77775 | 209.334 | 0.0287 | -89.232 | 210.155 | 1.03321 0.3922
43.255 | 1000.132 | 1.40682 | 109.303 | 1.44734 | 200.284 | -0.04052 ] -80.981 | 199.356 | —2.79962 | -0.46334

1525 | 1500.325 ] 0.94002 | 232.708 | 0.98028 | 321.198 | -0.04026 | —88.49 | 322.761 | —4.10699 | 0.48662
*3.967 |2077.678 | 0.68067 | 124.586 | 0.67268 | 218.573 | 0.00799 | -93.987 | 214.639 | 1.18779 | -1.79986
72257 | 3498.868 | 0.40695 | 247.665 | 0.4037 | 344.465 | 0.00325 | —96.8 | 337.718 | 0.80505 | -1.95869
202.264 | 4499.27 | 0.31802 | 10.566 | 0.30859 | 91.865 | 0.00943 | -81.299 | 100.619 | 3.05583 9.5292
290.462 | 4988.36 | 0.28753 | 300.064 | 0.33218 | 33.548 |-0.04464] 266.516 | 30.117 | -13.44151} -10.22714
B=90°

150 1 141421 | 299.394 | 1406.07 § 29.774 8.14 269.62 N/A 0.57892 N/A
158.268 | 499.534 | 2.83107 | 314.164 | 2.80951 | 44984 | 0.02156 | 269.18 | 44544 | 0.76739 | -0.97813
183.11 § 999.394 | 1.41507 | 182.002 | 1.37475 | 27298 | 0.04032 | —90.978 | 272.382 2.9329 ~0.21906
224.566 | 1499.657 | 0.94303 | 252.073 | 0.94032 | 339.194 | 0.00271 | -87.121 | 342.453 0.2882 0.96081
1999.778 | 0.70719 | 130.724 | 0.67483 } 223.51 | 0.03236 | —92.786 | 221.104 | 4.79528 | -1.07646

Table 15. Comparison of RRA Algorithm with LSVOCN Magnitude and Phase Values for different
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by Bo.

SURFACE SOUND-SPEED = 1500 m/s, SOURCE SOUND-SPEED = 1485 m/s
SOURCE DEPTH = 150 m, n’(y) WITH POSITIVE GRADIENT

FREQUENCY = 50 HZ, "*" TURNING POINT DATA
Receiver| Receiver RRA RRA JLSVOCN{LSVOCN{| DELTA | DELTA |RRA Adj | % DIFF % DIFF
Depth HRNG Mag Phase Mag Phase Mag Phase Phase Mag Phase
meters meters Pascals Deglee Pascals Dcﬂs Pascals Dem_geﬂees
B,=98°

149.861 0.99 1414.21 | 347.879 | 1395.57 | 77.713 18.64 | 270.166 N/A 1.33565 N/A
88.159 | 500.168 | 2.80645 24.02 2.8002 | 112.986 | 0.00625 | -88.966 | 113.854 0.2232 0.76824
43.255 | 1000.132 ] 1.40682 | 93.861 1.37231 | 182.489 | 0.03451 | -88.628 | 183.695 | 2.51474 0.66086
15.25 ] 1500.325 | 0.94002 | 190.542 | 0.89886 | 279.047 | 0.04116 | -88.505 | 280.376 | 4.57913 0.47626
*3.967 | 2077678 | 0.68067 | 96.917 1 0.72557 | 188.197 | -0.0449 | -91.28 186.751 | -6.18824 -0.76834
72.257 | 3498.868 | 0.40695 { 265.533 ]| 0.43785 | 350.513 | -0.0309 | -84.98 | 355.367 | -7.05721 1.38483
202.264 | 4499.27 | 0.31802 | 290.113 | 0.36357 | 17.357 | -0.04555 | 272.756 | 19.947 | -12.52854 | 14.92193
290,462 | 4988.36 | 0.28753 | 348.013 | 0.3022 86.994 | -0.01467 | 261.019 | 77.847 -4.8544 -10.51452
B,=90°
150 1 1414.21 | 347.879 { 1417.16 { 78.123 -2.95 269.756 N/A -0.20816 N/A
158.268 | 499.534 | 2.83107 | 62.833 | 2.82662 | 153.724 { 0.00445 | -90.891 | 153.077 | 0.15743 -0.42088
183.11 | 999.394 { 1.41507 108.4 1.45024 | 197.13 | -0.03517 | -88.73 198.644 | -2.42512 0.76802
224.566 | 1499.657 | 0.94303 | 122.415 | 0.94316 | 209.544 | -0.00013 | -87.129 | 212.659 | -0.01378 1.48656
282.604 | 1999.778 | 0.70719 | 98.145 | 0.74101 | 185.56 | -0.03382 | -87.415 | 188.389 | -4.56404 1.52457

Table 16. Comparison of RRA Algorithm with LEVOCN Magnitude and Phase Values for different
Receiver Depth and Horizontal Range Points Located on Two Separate Sound Rays, Identified by 3, .
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IV. SUMMARY AND RECOMMENDATIONS

This thesis had two primary goals. First, derive and document the solution to the
three-dimensional inhomogeneous Helmholtz equation for a free-space propagation
problem when the square of the index of refraction of the ocean medium is a linear
function of depth, and the source is an omindirectional point source. Given this type of
index of refraction, the solution to the inhomogeneous Helmholtz equation has an exact
solution in terms of Airy functions. This exact solution, in terms of Airy functions, was
then incorporated into the computer program Linear Space-Variant Ocean (LSVOCN) as
an additional ocean medium transfer function. The second goal was to further test the
Recursive Ray Acoustics (RRA) Algorithm by comparing the magnitudes and phases of
the acoustic sound pressure calculated, at various points, along a ray path generated by
the RRA Algorithm with corresponding magnitudes and phases calculated by LSVOCN
along the same ray path.

In Chapter 11, the solution to the aforementioned Helmholtz equation was
carefully derived and documented. This documentation served to record in detail the
steps that led to the final Airy function solution.

The next step in the solution process was to convert the theoretical Airy function
solution to the FORTRAN computer code that was used by LSVOCN. The main
problems in the conversion process were the many numerical errors that developed.
There were two main numerical errors encountered, overflow and underflow errors.
Overflow errors resulted from the evaluation of the Bairy function with large positive
argument values. The Airy function did not have this problem since it is well behaved for
both negative and positive argument values. A graphical representation of both the Airy
and Bairy functions is shown in Figures 7 and 8, respectively. Overflow errors result in
the termination of the computer code before it has finished a calculation. Thus no answer
is ever obtained - a serious problem. To prevent overflow errors, we used the
exponentially scaled Airy and Bairy functions, also shown in Figures 7 and 8. These two
functions allowed a significant advance towards a working FORTRAN computer code
that would solve the "Airy function solution" as given by Eq.(2.75) through Eq.(2.78).
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Using the exponentially scaled functions allowed for very large positive values of {(y),
the argument of the Airy and Bairy functions, to be used. These large positive values of
C(y) were the result of propagating waves becoming evanescent waves. For the solution
to be accurate, it is very impdrtant to account for these evanescent waves. The
exponentially scaled functions did not prevent underflow errors. These types of errors do
introduce some numerical inaccuracies, but do not result in computer program
termination.

The last numerical problem to solve was to establish an upper limit of integration
for Eq.(2.3). Using the computer, it is impossible to literally integrate to infinity. To
achieve numerical accuracy, the upper limit of integration had to be large enough to
account for most of the significant evanescent waves. Thus, a method to automatically
compute this upper limit of integration, regardless of the source frequency selected, was
developed.

Before comparing the RRA Algorithm with LSVOCN, we developed test cases to
validate the Airy function solution and FORTRAN computer code used by LSVOCN.
This validation was carried out by comparing the magnitude and phase of the velocity
potential equal to the free-space Green's function of a homogeneous ocean medium with
the magnitude and phase of the velocity potential computed by LSVOCN. The
free-space Green's function was chosen because we could make the modeled ocean
medium used by LSVOCN "simulate" a homogeneous medium without actually being
made homogeneous. Therefore, the Green's function provided a simple theoretical
solution that we could compare the calculated solution of LSVOCN with. All three
Green's function test cases discussed in detail in Chapter III gave very good results. Now
we were finally ready to test calculated values from the Recursive Ray Acoustics (RRA)
Algorithm with those predicted by LSVOCN.

The RRA Algorithm versus LSVOCN comparison tests were conducted first,
when the square of the index of refraction had a negative gradient and second, when the
square of the index of refraction had a positive gradient. The test results indicated that

the magnitudes from the RRA Algorithm and LSVOCN were in close agreement. In
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order to be able to compare the RRA Algorithm with LSVOCN, a magnitude scale factor
was derived that related the source level in decibels used by the RRA Algorithm to the
amplitude of the impulse function used to model the omnidirectional point source in
LSVOCN. The magnitudes of LSVOCN were extremely close to the values predicted by
the RRA Algorithm.

The phase comparisons between the RRA Algorithm and LSVOCN were also
quite good. The initial phase offset between LSVOCN and the RRA Algorithm was
determined by calculating the phase differences, one meter from the source, between the
RRA Algorithm and LSVOCN, i.e., the phase difference between the RRA Algorithm
and LSVOCN of the first data point of each ray path. Once this difference was
determined, it was subtracted from the other phase values, less the first data point,
calculated by the RRA Algorithm along the same ray path. It was observed that the
percentage phase error tended to grow as the receiver was moved further from the source.
This trend makes intuitive sense because it suggests that small phase errors in the
beginning are propagated and accumulated as the ray travels further from the source. It
was also observed that several data points resulted in large percentage differences for the
phase. These large percentage differences, resulting from the variance between small
phases could possibly be reduced by making the integration step size a function of the
wave number rather than a fixed quantity.

Because ray acoustics is an approximate solution of the wave equation,
characterized as a "high frequency"” approximation, we expected to see better and better
agreement between the RRA Algorithm and LSVOCN as the source frequency increased
from 50 Hertz to 1000 Hertz. The data in Tables 11 through 16 did not indicate such a
trend for all cases. In fact, some percentage errors in magnitude and phase are larger for
the 1000 Hertz case than the 50 Hertz case. The expected results could possibly be
observed if the integration step size were made a function of the wave number, as
discussed earlier. The results from all six test cases comparing the RRA Algorithm with
LSVOCN indicate that the RRA Algorithm was, in general, accurate regardless of the

frequency selected.
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As a final note, the CPU time required by the RRA Algorithm to compute all of
the magnitudes and phases for thousands of points along each ray path was typically on
the order of 30 seconds. Table 17 gives the approximate CPU times for each LSVOCN
data point calculated. Examination of Table 17 reveals that the RRA Algorithm is a much
more efficient method to calculate the acoustic pressure compared to the Airy function

wave solution. The wave solution not only takes considerably more time, but is also more

susceptible to numerical inaccuracies.

CPU TIMES PER DATA POINT CALCULATED BY LSVOCN

B,= 90° B,= 82° B,= 90° B,= 98°
Square of the index of refraction with Square of the index of refraction with
Negative gradient Positive gradient
Q= receiver @ 1 meter | receiver @ 1 meter | receiver @ 1 meter | receiver @ 1 meter
1000 HZ ~59 min ~50 min ~54 min ~22.5 min
other receiver points | other receiver points | other receiver points| other receiver points
~6 min ~6 min ~6 min ~6 min

@EQ =250

receiver @ 1 meter

receiver @ 1 meter

receiver @ 1 meter

receiver @ 1 meter

~ 16 min ~ 22 min ~ 16 min ~ 23 min
other receiver point Jother receiver point Jother receiver point | other receiver point
~5 min ~5 min ~5.5 min ~5.3 min
FREQ = receiver @ 1 meter | receiver @ 1 meter | receiver @ 1 meter | receiver @ 1 meter
50 HZ ~8 min ~25 min ~8.2 min ~26 min
other receiver point [other receiver point Jother receiver point | other receiver point
~5 min ~5 min ~4 min ~5 min

Table 17. CPU Times Per Data Point Calculated by LSVOCN.

Recommendations for further research include:

1. To achieve more accurate calculated acoustic pressure values from the RRA
Algorithm (magnitude and phase) a smaller arc length step size, used by the
RRA Algorithm, should be selected. Using a smaller arc length step size may
decrease small phase errors that are propagated and accumulated as the ray
travels further from the source.

. Propagate sound rays, using the RRA Algorithm, such that focal points are

generated. Compare the RRA Algorithm and LSVOCN results.

to determine if improved accuracy can be obtained.
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- Make the integration step size used by Eq.(2.3) a function of the wave number




APPENDIX. TABULATED VALUES FOR n2(y),k2(»),and {(»)
FOR DIFFERENT LAUNCH ANGLES AND RECEIVER DEPTHS.

2
n“(y) WITH POSITIVE GRADIENT
y=0 y=50 y=100 y=150 y=200 y=250 =300
meters meters meters meters meters meters meters

—_ o

50—84
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k) -0.0004016 |-0.0001048 J0.00019213 Jo.00048901 J0.00078589 }0.0010828 [0.0013796
L) 1.2249 0.31946 -0.58594 [-1.4913 -2.3967 -3.3021 -4.075
p— ]

B, = 86
2
x(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k') -0.0006729 [-0.0003759 }-0.0000791 J0.00021778 J0.00051466 Jo.00081154 Jo.0011084
442) 2.0520 1.1466 0.24123 -0.66417 [-~1.5696 -2.4750 -3.3804
—-— 0

B, =88
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k’(y) ~0.0008361 f-0.0005393 §-0.0002424 J0.00005451 §0.00035139 J0.00064827 J0.00094515
) 2.5500 1.6446 0.73915 -0.16624 |-1.0716 -1.9770 -2.8824
-— 0

B, =90
w'(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k) -0.0008906 }-0.0005938 §-0.0002968 Jo.0 0.00029688 J0.00055376 |0.00089064
4{\)) 2.7162 1.8108 0.90540 0.0 -0.90540 |-1.8108 -2.7162
— o

B, =92
w(y) 0.96010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0198
k() -0.0008361 §-0.0005393 |-0.0002424 J0.00005451 J0.00035139 J0.00064827 }0.00094515
t» 2.5500 1.6446 0.73915 -0.16624 J-1.0716 -1.9770 -2.8824
— L]

Bo_94
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k() ~-0.0006729 |-0.0003760 J0.00019213 J0.00048501 Jo.00078588 Jo.0010828 Jo0.0011084
tn 2.0520 1.1466 -0.58594 [-1.4913 -2.3967 -3.3021 -3.3804
-— 0

B, =96
v'(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
Ky ~0.0004016 §-0.0001048 }~0.0001028 J0.00048901 J0.0010847 Jo.0016844 J0.0013796
d()) 1.2249 °  Jo.31946 0.031345 }-1.4913 -3.3081 -5.1370 -4.2075
-— 0

ﬁo—gs
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k') ~0.0000238 J0.00027312 J0.00057000 Jo.00086688 J0.0011638 §0.0014606 §0.0017575
{m 0.072457 [-0.83294 [-1.7383 -2.6437 -3.5491 ~4.4545 -5.3599

Table 18. Values of n*(y), k2(»), {(y) for
different launch angles Bo and receiver depths y.




FREQUENCY =250 HZ

2
n’(y) WITH POSITIVE GRADIENT
y=0 y=50 y=100 y=150 y=200 y=1250 y =300
meters meters meters meters meters meters meters
p,=84°
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k() -0.010041 }-0.0026187 |0.0048032 J0.012225 Jo.019647 Jo0.027069 Jo.034491
ty) 3.5815 0.93409 -1.7133 -4.3607 -7.0081 -9.6555 -12.303
-— Cl
B, =86
w(y) 0.98010 0.98673 0.95337 1.00000 1.0066 1.0133 1.0199
k(y) -0.016821 J-0.0093994 ]-0.0019775 Jo.0054445 Jo0.012866 Jo.020288 Jo.027710
L 6.0002 3.3528 0.70537 ~1.9420 -4.5894 -7.2368 -9.8842
_— 0
B, =88
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k(y) -0.020903 [-0.013481 |-0.0060592 J0.0013628 J0.0087847 [0.016207 §0.023629
&ty 7.4561 4.8087 2.1613 -0.48610 J-3.1335 -5.7809 -8.4283
B, =90°
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k') -0.022266 }-0.014844 |-0.0074220l0.0 0.0074220 J0.014844 J0.022266
(4(}] 7.9422 5.2948 2.6474 0.0 -2.6474 -5.2948 -7.9422
— 0
B, =92
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k) -0.020903 |-0.013481 ]-0.0060592 J0.0013628 [0.0087847 J0.016207 [o.023629
[0} 7.4561 4.8087 2.1613 -0.48610 §-3.133% -5.7808% -8.4283
— o
B, =94
v(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k’(y) -0.016821 [-0.0093994 [-0.0019775 J0.0054445 Jo.012866 Jo.020288 [o.027710
Ly 6.0002 3.3528 0.70537 -1.9420 -4.5894 -7.2368 -9.8842
— o
Bo =96
2
n(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k(y) -0.010041 [-0.0026187]0.0048032 J0.012225 Jo.019647 Jo0.027069 Jo0.034451
Ly 3.5815 0.93409 -1.7133 -4.3607 -7.0081 -9.6555 -12.303
— 1+]
ﬂo - 98
w'(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
K(y) -0.0005940 J0.0068280 [0.014250 J0.021672 Jo.029094 Jo.03s516 [o.0439538
Ly 0.21186 -2.4355 -5.0829 -7.7303 -10.378 -13.025% -15.673

Table 19. Values of n*(y), k2(y), {(y) for
different launch angles B, and receiver depths y.
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FREQUENCY =1000 HZ

2
n“(y) WITH POSITIVE GRADIENT
y=0 y=50 y=100 y=150 y=200 y=250 y=300
meters meters meters meters meters meters meters
- o
bo =84
n(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k(y) -0.16065 [-0.041900 }0.076852 J0.19560 0.31435 0.43311 0.55186
t» 9.0248 2.3538 -4.3173 -10.988 ~17.659 -24.330 ~31.001
B, =86°
¥(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k@) ~0.26914 [-0.15039 [-0.031640 [0.087112 J0.20586 0.32461 0.44337
<{\)) 15.119 8.4484 1.7774 -4.8936 -11.565 -18.236 -24.907
— [
Bo = 88
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k(y) -0.33445 [-0.21570 [|-0.096947 [0.021804 J0.14056 0.25931 0.37806
m 16.788 12.117 5.4461 -1.2249 -7.8959 -14.567 -21.238
B, =90°
v(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
K(y) -0.35625 }-0.23750 §-0.11875 Jo.o0 0.11875 0.23750 0.35625
1) 20.013 13.342 6.6710 0.0 -6.6710 -13.342 -20.013
— [+]
Bo =92
v'(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k) -0.33445 [-0.21570 [-0.096947 [0.021804 J0.14056 0.25931 0.37806
L2} 18.788 12.117 0.5.4461 [-1.2249 -7.8959 -14.567 -21.238
- L]
Bo - 94
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
k') -0.26914 [-0.15039 }-0.031640 [0.087112 J0.20586 0.32461 0.44337
Ly 15.119 8.4484 1.7774 -4.8936 -11.565 -18.236 ~24.907
B, =96
w'(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
K(y) -0.16065 {-0.041900 Jo.076852 Jo.19560 0.31435 0.43311 0.55186
(%) 9.0248 2.3538 -4.3173 -10.968 -17.659 -24.330 -31.001
- 0 -
B, =98
w(y) 0.98010 0.98673 0.99337 1.00000 1.0066 1.0133 1.0199
K'(y) -0.0095034 Jo.10925 0.22800 0.34675 0.46550 0.58425 0.70300
<] 0.53386 -6.1372 -12.808 -19.479 -26.150 -32.821 -39.492

Table 20. Values of n2(y), k2(»), {(y) for
different launch angles B, and receiver depths y.




FREQUENCY =50 HZ

SOURCE DEPTH =150 M

n’(y) WITH NEGATIVE GRADIENT

y=0 y=50 y=100 y=150 y=200 y=1250 y=300
meters meters meters meters meters meters meters

— Q

BO_M
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k') 0.0013341 }0.0010460 }0.00075794 J0.00046983 }0.00018173 |-0.0001064 }-0.0003945
Ly -4.1510 -3.2546 -2.3582 -1.4618 -0.56542 [0.33097 1.2274
—_— 0

50—86
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
kX(y) 0.0010736 J0.00078545 J0.00049734 |0.00020924 |-0.0000789 |~0.0003669 §-0.0006551
ty -3.3402 -2.4438 -1.5474 -0.65101 Jo.24537 1.1418 2.0382
— ]

B,=88
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k(y) 0.00091669 |0.00062858 ]0.00034048 |0.00005237 |-0.0002357 [-0.0005238 |-0.0008115
&) -2.8521 -1.9557 -1.0593 -0.16295 [0073344 1.6298 2.5262
—-— o

B,=90
v'(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
Ky 0.00086431 Jo.00057621 Jo.00028810 J0.0 -0.0002881 }-0.0005762 |-0.0008643
{0} -2.6892 -1.7928 -0.89639 Jo0.0 0.89639 1.7928 2.6892
— [+]

B, =92
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k@) 0.00091669 }0.00062858 §0.00034048 §0.00005237 J-0.0002357 |-0.0005238 }-0.0008119
E(y) -2.8521 -1.9587 -1.0593 -0.16295 [0.73344 1.6298 2.5262
- [:]

B, =94
2
u(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
| &1)) 0.0010736 [0.00078545 J0.00049734 §0.00020924 |-0.0000789 |-0.0003670 |-0.0006551
{0%) -3.3402 -2.4438 -1.5474 -0.65101 Jo.24537 1.1418 2.0382
— ]

50_96
n'(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k') 0.0013341 §0.0010460 [0.00075794 }0.00046983 J0.00018173 |-0.0001064 [-0.0003945
L(y) -4.1510 -3.2546 -2.3582 -1.4618 -0.66542 Jo.33097 1.2274
— o .

B, =98
v'(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k(y) 0.0016972 ]0.0014091 [0.0011210 Jo.00083289 Jo.00054478 f0.00025668 |-0.0000314
{0)) -5.2806 -4.3842 -3.4878 -2.5914 -1.6950 -0.79861 §0.097780

Table 21. Values of n?(v), k2(v), {(») for
different launch angles B, and receiver depths y.
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FREQUENCY =250 HZ

2
n(y) WITH NEGATIVE GRADIENT
y=0 y=50 y=100 y=150 y=200 y=250 y=300
meters meters meters meters meters meters meters
B, = 84°
¥(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
Ky 0.033654 J0.026151 }0.018948 §0.011746 [0.0085432 J-0.0026594 |-0.0098620
<3 -12.138 -9.5165 -6.8954 -4.2744 -1.6533 0.96776 3.5888
—_ 0
B, =86
¥(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k) 0.02683% [0.019636 J0.012434 §0.0052310 |-0.0019716 ]-0.0091742}-0.016377
i -9.7667 -7.1457 -4.5246 -1.9036 0.71748 3.3385 5.9596
B, =88°
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97930
K(y) 0.022917 J0.015715 ]0.0085119 [0.0013093 [|-0.0058933]-0.013096 §-0.020298
<)) -8.3396 -5.7186 -3.0975 -0.47647 |2.1446 4.7656 7.3867
B, =90°
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
K(y) 0.021608 Jo.014405 fo.0072026 Jo.o -0.0072026 |-0.014405 §-0.021608
442) -7.8632 -5.2421 -2.6211 0.0 2.6211 5.2421 7.8632
- 1]
B, =92
¥(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k() 0.022917 §0.015715 §0.0085119 }0.0013093 §-0.0058933 }-0.013096 [-0.020298
iy -8.3396 -5.7186 -3.0975 -0.47647 [2.1446 4.7656 7.3867
— o
B, =94
¥(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
K(y) 0.026839 J0.019636 [0.012434 [0.0052310 ]-0.0019716 ]-0.0091742 }-0.016377
[0y -9.7667 -7.1457 -4.5246 -1.9036 0.71748 3.3385 5.9596
—_ 0
B, =96
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
K(y) 0.033354 [Jo0.026151 {0.018948 [0.011746 [o0.0045432 ]|-0.0026594 |-0.0098620
0] -12.138 -9.5165 -6.8954 -4.2744 -1.6533 0.96776 3.5888
— o
Bo =98
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k() 0.042430 [0.035227 fo0.028025 Jo.020822 Jo.o13620 Jo.oo64169 |-0.0007857
tw -15.440 -12.819 -10.198 -7.5773 -4.9562 -2.3351 0.28591

Table 22. Values of n2(y), £2(»), {(») for
different launch angles B, and receiver depths y.




FREQUENCY = 1000 HZ
SOURCE DEPTH =150 M

n’(y) WITH NEGATIVE GRADIENT

y=0 y=50 y=100 y=150 y=200 y=1250 y =300
meters meters meters meters meters meters meters
p— o
Bo = 84
w'(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k(y) 0.53366 0.41842 0.30317 0.18793 0.072692 }-0.042550 }-0.15779
[d(}) -30.585 -23.980 ~17.37% -10.771 -4.1661 2.4386 9.0432
B, =86°
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k') 0.42942 0.31418 0.19894 0.083696 |-0.031546 [-0.14679 {-0.26203
4] -24.611 -18.006 -11.401 -4.7967 1.8079 8.4126 15.017
—— ]
B, =88
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k*(y) 0.36667 0.25143 0.13619 0.020949 }-0.094292 [-0.20953 [-0.32478
() -21.015 -14.410 -7.8053 -1.2006 5.4040 12.009 18.613
B, =90°
w'(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k’(y) 0.34572 0.23048 0.11524 0.0 -0.11524 [|-0.23048 [-0.34572
) -19.814 -13.209 ~6.6046 0.0 6.6046 13.209 19.814
— o
B, =92
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k() 0.36667 0.25143 0.13619 0.020949 [|-0.094292 }-0.20953 {-0.32478
Ly -21.015 -14.410 -7.8053 -1.2006 5.4040 12.009 18.613
B, = 94°
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
kKi(y) 0.42942 0.31418 0.19894 0.083696 [-0.031546 §-0.14679 }-0.26203
L) -24.611 ~18.006 -11.401 -4.7967 1.8079 8.4126 15.017
— 0
B, =96
r'(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
k() 0.53366 0.41842 0.30317 0.18793 0.072632 [-0.0425%0 [-0.15779
Lv) -30.585 -23.980 -17.375 -10.771 -4.1661 2.4386 9.0432
. ] -
B, =98
w(y) 1.0201 1.0134 1.0067 1.00000 0.99330 0.98660 0.97990
ki(v) 0.67888 0.56364 0.44840 0.33315 0.21791 0.10267 -0.012571
[ -38.907 -32.303 -25.698 -19.094 -12.489 -5.8842 0.72045%

Table 23. Values of n%(y), k2(»), {(y) for

different launch angles B, and receiver depths y.

58




BETAO0 =84 BETAQ =88
0 0

T 100 T 100
K £ 5
& 200 & 200
300 300
5 5

0 & ¢ 6

ZETA ZETA
BETAD = 02 BETA0 =98
0 0
T {0 X 100
o g K
& 200 & 200

300 300
5 5

0 5
ZETA

FREQUENCY =80 hertz

SOURCE DEPTH = 180 meters

OCEAN DEPTH = 300 meters

SOUND SPEED, OCEAN SURFACE = 1500 m's
SOUND SPEED, SOURCE DEPTH = 1485 m#s

Figure 12. Plot of {(y) versus depth y for different launch angles B,:
n’(y) with positive gradient.
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Figure 13. Plot of {(y) versus depth y for different launch angles Bo:
n’(y) with positive gradient.
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Figure 14. Plot of {(y) versus depth y for different launch angles B,:
n’(y) with positive gradient.
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Figure 15. Plot of {(y) versus depth y for different launch angles Bo:
n’(y) with negative gradient.
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Figure 16. Plot of {(y) versus depth y for different launch angles f3,:
n’(y) with negative gradient.
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Figure 17. Plot of {(y) versus depth y for different launch angles B :
n’(y) with negative gradient.
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